Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (169)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33818560

RESUMO

Organotypic slice cultures have been widely used to model brain disorders and are considered excellent platforms for evaluating a drug's neuroprotective and therapeutic potential. Organotypic slices are prepared from explanted tissue and represent a complex multicellular ex vivo environment. They preserve the three-dimensional cytoarchitecture and local environment of brain cells, maintain the neuronal connectivity and the neuron-glia reciprocal interaction. Hippocampal organotypic slices are considered suitable to explore the basic mechanisms of epileptogenesis, but clinical research and animal models of epilepsy have suggested that the rhinal cortex, composed of perirhinal and entorhinal cortices, play a relevant role in seizure generation. Here, we describe the preparation of rhinal cortex-hippocampus organotypic slices. Recordings of spontaneous activity from the CA3 area under perfusion with complete growth medium, at physiological temperature and in the absence of pharmacological manipulations, showed that these slices depict evolving epileptic-like events throughout time in culture. Increased cell death, through propidium iodide uptake assay, and gliosis, assessed with fluorescence-coupled immunohistochemistry, was also observed. The experimental approach presented highlights the value of rhinal cortex-hippocampus organotypic slice cultures as a platform to study the dynamics and progression of epileptogenesis and to screen potential therapeutic targets for this brain pathology.


Assuntos
Encéfalo/fisiopatologia , Hipocampo/fisiopatologia , Técnicas de Cultura de Órgãos/métodos , Animais , Humanos , Ratos , Ratos Sprague-Dawley
2.
Neurotoxicology ; 54: 170-177, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27133440

RESUMO

Mortality and morbidity by toxic metals is an important issue of occupational health. Lead is an ubiquitous heavy metal in our environment despite having no physiological role in biological systems. Being an homeostatic controller is expected that the autonomic nervous system would show a degree of impairment in lead toxicity. In fact, sympathoexcitation associated to high blood pressure and tachypnea has been described together with baroreflex dysfunction. However, the mechanisms underlying the autonomic dysfunction and the interplay between baro- and chemoreflex are not yet fully clarified. The angiotensinogenic PVN-NTS axis (paraventricular nucleus of the hypothalamus - nucleus tractus solitarius axis) is a particularly important neuronal pathway that could be responsible for the autonomic dysfunction and the cardiorespiratory impairment in lead toxicity. Within the current work, we addressed in vivo, baro- and chemoreceptor reflex behaviour, before and after central angiotensin inhibition, in order to better understand the cardiorespiratory autonomic mechanisms underlying the toxic effects of long-term lead exposure. For that, arterial pressure, heart rate, respiratory rate, sympathetic and parasympathetic activity and baro- and chemoreceptor reflex profiles of anaesthetized young adult rats exposed to lead, from foetal period to adulthood, were evaluated. Results showed increased chemosensitivity together with baroreceptor reflex impairment, sympathetic over-excitation, hypertension and tachypnea. Chemosensitivity and sympathetic overexcitation were reversed towards normality values by NTS treatment with A-779, an angiotensin (1-7) antagonist. No parasympathetic changes were observed before and after A-799 treatment. In conclusion, angiotensin (1-7) at NTS level is involved in the autonomic dysfunction observed in lead toxicity. The increased sensitivity of chemoreceptor reflex expresses the clear impairment of autonomic outflow to the cardiovascular and respiratory systems induced by putative persistent, long duration, alert reaction evoked by the long term exposure to lead toxic effects. The present study brings new insights on the central mechanisms implicated in the autonomic dysfunction induced by lead exposure which are relevant for the development of additional therapeutic options to tackle lead toxicity symptoms.


Assuntos
Doenças do Sistema Nervoso Autônomo/induzido quimicamente , Barorreflexo/efeitos dos fármacos , Células Quimiorreceptoras/efeitos dos fármacos , Chumbo/toxicidade , Taxa Respiratória/efeitos dos fármacos , Angiotensina II/análogos & derivados , Angiotensina II/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Feminino , Frequência Cardíaca/efeitos dos fármacos , Microinjeções , Fragmentos de Peptídeos/farmacologia , Fenilefrina/farmacologia , Gravidez , Ratos , Ratos Wistar , Núcleo Solitário/efeitos dos fármacos , Simpatomiméticos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...