Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 448: 130813, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706487

RESUMO

This review gathered and analyzed data about (i) the Cd-induced impacts on seed germination and seedling vigor, and (ii) the use of different priming agents to mitigate Cd-induced impacts on the early plant development. Critical evaluation of the obtained data revealed intriguing results. First, seeds of diverse species can endure exposures to Cd. Such endurance is exhibited as maintenance of or even improvement in the seed germination and vigor (up to 15% and 70%, respectively). Second, the main factors influencing seed tolerance to Cd toxicity are related to temporal variations in anatomical, physiological, and/or biochemical features. Third, Cd can trigger diverse transgenerational effects on plants by shaping seed endophytes, by modulating seed provisioning with resources and regulatory elements, and/or by altering seed (epi)genomics. Fourth, different chemical, biological and physical priming agents can mitigate Cd-induced impacts on seeds, sometimes enhancing their performance over the control (reference) values. Overall, this review shows that the impacts of Cd on seed germination and vigor encompass not only negative outcomes but also neutral and positive ones, depending upon the Cd dose, media properties, plant species and genotypes, plant developmental stage and organ, and management approaches. Increasing our understanding of plant tolerance mechanisms against the growing background Cd pollution is relevant to support breeding programs, agricultural practices, and health-environmental policies.


Assuntos
Germinação , Plântula , Cádmio/toxicidade , Sementes
2.
Front Plant Sci ; 11: 577851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408727

RESUMO

Light-based methods are being further developed to meet the growing demands for food in the agricultural industry. Optical imaging is a rapid, non-destructive, and accurate technology that can produce consistent measurements of product quality compared to conventional techniques. In this research, a novel approach for seed quality prediction is presented. In the proposed approach two advanced optical imaging techniques based on chlorophyll fluorescence and chemometric-based multispectral imaging were employed. The chemometrics encompassed principal component analysis (PCA) and quadratic discrimination analysis (QDA). Among plants that are relevant as both crops and scientific models, tomato, and carrot were selected for the experiment. We compared the optical imaging techniques to the traditional analytical methods used for quality characterization of commercial seedlots. Results showed that chlorophyll fluorescence-based technology is feasible to discriminate cultivars and to identify seedlots with lower physiological potential. The exploratory analysis of multispectral imaging data using a non-supervised approach (two-component PCA) allowed the characterization of differences between carrot cultivars, but not for tomato cultivars. A Random Forest (RF) classifier based on Gini importance was applied to multispectral data and it revealed the most meaningful bandwidths from 19 wavelengths for seed quality characterization. In order to validate the RF model, we selected the five most important wavelengths to be applied in a QDA-based model, and the model reached high accuracy to classify lots with high-and low-vigor seeds, with a correct classification from 86 to 95% in tomato and from 88 to 97% in carrot for validation set. Further analysis showed that low quality seeds resulted in seedlings with altered photosynthetic capacity and chlorophyll content. In conclusion, both chlorophyll fluorescence and chemometrics-based multispectral imaging can be applied as reliable proxies of the physiological potential in tomato and carrot seeds. From the practical point of view, such techniques/methodologies can be potentially used for screening low quality seeds in food and agricultural industries.

3.
J Hazard Mater ; 384: 121434, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31812481

RESUMO

Tolerance level to cadmium (Cd) toxicity is generally associated with reductions of the internal Cd accumulation in living organisms. In plants, Cd exposure frequently triggers negative effects on their growth and productivity. However, an increased number of studies has reported the improved performance of some plant species (or their accessions/genotypes/varieties/cultivars/clones) to Cd exposure, despite Cd accumulation in their roots and shoots. These results indicate that plants have developed protective strategies to neutralize the side-effects from Cd toxicity or, more controversially, mechanisms that employ Cd as beneficial element. Here, we gathered information about Cd-induced hormetic effects on plants, and explored the potential mechanisms that allow them to have a better performance under Cd exposure. The promotion of plant development depends on both direct and indirect Cd-induced alterations in the metabolism of plants and their surround environment. In addition, the mechanisms behind the positive Cd-induced transgenerational effects were also discussed in the present paper.


Assuntos
Cádmio/farmacologia , Hormese , Magnoliopsida/efeitos dos fármacos , Cádmio/toxicidade , Hormese/efeitos dos fármacos , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...