Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 11: 36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116752

RESUMO

Acute respiratory distress syndrome (ARDS) is a common disease entity in critical care medicine and is still associated with a high mortality. Because of the heterogeneous character of ARDS, animal models are an insturment to study pathology in relatively standardized conditions. Rodent models can bridge the gap from in vitro investigations to large animal and clinical trials by facilitating large sample sizes under physiological conditions at comparatively low costs. One of the most commonly used rodent models of acute lung inflammation and ARDS is administration of lipopolysaccharide (LPS), either into the airways (direct, pulmonary insult) or systemically (indirect, extra-pulmonary insult). This narrative review discusses the dynamics of important pathophysiological pathways contributing to the physiological response to LPS-induced injury. Pathophysiological pathways of LPS-induced lung injury are not only influenced by the type of the primary insult (e.g., pulmonary or extra-pulmonary) and presence of additional stimuli (e.g., mechanical ventilation), but also by time. As such, findings in animal models of LPS-induced lung injury may depend on the time point at which samples are obtained and physiological data are captured. This review summarizes the current evidence and highlights uncertainties on the molecular dynamics of LPS-induced lung injury in rodent models, encouraging researchers to take accurate timing of LPS-induced injury into account when designing experimental trials.

2.
Front Physiol ; 9: 920, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057557

RESUMO

Background: Laparoscopic surgery with pneumoperitoneum increases respiratory system elastance due to the augmented intra-abdominal pressure. We aim to evaluate to which extent positive end-expiratory pressure (PEEP) is able to counteract abdominal hypertension preventing progressive lung collapse and how rib cage elastance influences PEEP effect. Methods: Forty-four Wistar rats were mechanically ventilated and randomly assigned into three groups: control (CTRL), pneumoperitoneum (PPT) and pneumoperitoneum with restricted rib cage (PPT-RC). A pressure-volume (PV) curve followed by a recruitment maneuver and a decremental PEEP trial were performed in all groups. Thereafter, animals were ventilated using PEEP of 3 and 8 cmH2O divided into two subgroups used to evaluate respiratory mechanics or computed tomography (CT) images. In 26 rats, we compared respiratory system elastance (Ers) at the two PEEP levels. In 18 animals, CT images were acquired to calculate total lung volume (TLV), total volume and air volume in six anatomically delimited regions of interest (three along the cephalo-caudal and three along the ventro-dorsal axes). Results: PEEP of minimal Ers was similar in CTRL and PPT groups (3.8 ± 0.45 and 3.5 ± 3.89 cmH2O, respectively) and differed from PPT-RC group (9.8 ± 0.63 cmH2O). Chest restriction determined a right- and downward shift of the PV curve, increased Ers and diminished TLV and lung aeration. Increasing PEEP augmented TLV in CTRL group (11.8 ± 1.3 to 13.6 ± 2 ml, p < 0.05), and relative air content in the apex of PPT group (3.5 ± 1.4 to 4.6 ± 1.4% TLV, p < 0.03) and in the middle zones in PPT-RC group (21.4 ± 1.9 to 25.3 ± 2.1% TLV cephalo-caudally and 18.1 ± 4.3 to 22.0 ± 3.3% TLV ventro-dorsally, p < 0.005). Conclusion: Regional lung recruitment potential during pneumoperitoneum depends on rib cage elastance, reinforcing the concept of PEEP individualization according to the patient's condition.

3.
Respir Physiol Neurobiol ; 229: 34-42, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27102012

RESUMO

Mixtures of anhydrous ethyl alcohol and gasoline substituted for pure gasoline as a fuel in many Brazilian vehicles. Consequently, the concentrations of volatile organic compounds (VOCs) such as ketones, other organic compounds, and particularly aldehydes increased in many Brazilian cities. The current study aims to investigate whether formaldehyde, acetaldehyde, or mixtures of both impair lung function, morphology, inflammatory and redox responses at environmentally relevant concentrations. For such purpose, C57BL/6 mice were exposed to either medical compressed air or to 4 different mixtures of formaldehyde and acetaldehyde. Eight hours later animals were anesthetized, paralyzed and lung mechanics and morphology, inflammatory cells and IL-1ß, KC, TNF-α, IL-6, CCL2, MCP-1 contents, superoxide dismutase and catalalase activities were determined. The extra pulmonary respiratory tract was also analyzed. No differences could be detected between any exposed and control groups. In conclusion, no morpho-functional alterations were detected in exposed mice in relation to the control group.


Assuntos
Acetaldeído/toxicidade , Poluentes Atmosféricos/toxicidade , Formaldeído/toxicidade , Pulmão/efeitos dos fármacos , Compostos Orgânicos Voláteis/toxicidade , Poluição do Ar , Animais , Fenômenos Biomecânicos , Feminino , Pulmão/patologia , Pulmão/fisiopatologia , Medidas de Volume Pulmonar , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Pressão , Ventilação Pulmonar , Fatores de Tempo
4.
Anesth Analg ; 116(3): 627-33, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22467900

RESUMO

BACKGROUND: A decremental positive end-expiratory pressure (PEEP) trial after full lung recruitment allows for the adjustment of the lowest PEEP that prevents end-expiratory collapse (open-lung PEEP). For a tidal volume (Vt) approaching zero, the PEEP of minimum respiratory system elastance (PEEP(minErs)) is theoretically equal to the pressure at the mathematical inflection point (MIP) of the pressure-volume curve, and seems to correspond to the open-lung PEEP in a decremental PEEP trial. Nevertheless, the PEEP(minErs) is dependent on Vt and decreases as Vt increases. To circumvent this dependency, we proposed the use of a second-order model in which the volume-independent elastance (E1) is used to set open-lung PEEP. METHODS: Pressure-volume curves and a recruitment maneuver followed by decremental PEEP trials, with a Vt of 6 and 12 mL/kg, were performed in 24 Wistar rats with acute lung injury induced by intraperitoneally injected (n = 8) or intratracheally instilled (n = 8) Escherichia coli lipopolysaccharide. In 8 control animals, the anterior chest wall was surgically removed after PEEP trials, and the protocol was repeated. Airway pressure (Paw) and flow (F) were continuously acquired and fitted by the linear single-compartment model (Paw = Rrs·F + Ers·V + PEEP, where Rrs is the resistance of the respiratory system, and V is volume) and the volume-dependent elastance model (Paw = Rrs·F + E1 + E2·V·V + PEEP, where E2·V is the volume-dependent elastance). From each model, PEEPs of minimum Ers and E1 (PEEP(minE1)) were identified and compared with each respective MIP. The accuracy of PEEPminE1 and PEEPminErs in estimating MIP was assessed by bias and precision plots. Comparisons among groups were performed with the unpaired t test whereas a paired t test was used between the control group before and after chest wall removal and within groups at different Vts. All P values were then corrected for multiple comparisons by the Bonferroni procedure. RESULTS: In all experimental groups, PEEPminErs, but not PEEPminE1, tended to decrease as Vt increased. The difference between MIP and PEEPminE1 exhibited a lower bias compared with the difference between MIP and PEEPminErs (P < 0.001). The PEEPminE1 was always significantly higher than the PEEPminErs (7.7 vs 3.8, P < 0.001) and better approached MIP (7.7 vs 7.3 cm H2O with P = 0.04 at low Vt, and 7.8 vs 7.1 cm H2O with P < 0.001 at high Vt). CONCLUSIONS: PEEPminE1 better identifies the open-lung PEEP independently of the adjusted Vt, and may be a practical, more individualized approach for PEEP titration.


Assuntos
Pulmão/fisiologia , Respiração com Pressão Positiva/métodos , Mecânica Respiratória/fisiologia , Volume de Ventilação Pulmonar/fisiologia , Animais , Masculino , Respiração com Pressão Positiva/instrumentação , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...