Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(1): e0226337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940359

RESUMO

Genlisea hawkingii, which is a new species of Genlisea subgen. Tayloria (Lentibulariaceae) from cerrado in southwest Brazil, is described and illustrated. This species has been found in only one locality thus far, in the Serra da Canastra, which is located in the Delfinópolis municipality in Minas Gerais, Brazil. The new species is morphologically similar to Genlisea violacea and G. flexuosa, but differs from them in having a corolla with a conical and curved spur along with sepals with an acute apex and reproductive organs that only have glandular hairs. Moreover, it is similar to G. uncinata's curved spur. G. hawkingii is nested within the subgen. Tayloria clade as a sister group to all the other species of this subgenus. Therefore, both morphological and phylogenetic results strongly support G. hawkingii as a new species in the subgen. Tayloria.


Assuntos
Lamiales/classificação , Filogenia , Brasil , Conservação dos Recursos Naturais
2.
Front Plant Sci ; 10: 336, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972086

RESUMO

Utricularia are carnivorous plants which have small hollow vesicles as suction traps that work underwater by means of negative pressure and watertightness of the entrance for capturing small animal prey. Utricularia multifida and U. westonii have specific thick-walled traps, which are triangular in a transverse section but their functioning is unclear. Some authors suggest that the trap door in U. multifida acts as a simple valve without a suction trapping mechanism. Our main aim was to check the anatomical trap characters that are responsible for possible water outflow and maintaining negative pressure as main functional parts of the active trap suction mechanism in both species. Using different microscopic techniques, we investigated the ultrastructure of external trap glands, quadrifids, glands near the entrance (bifids, monofids), and also pavement epithelium. Quadrifids of both species have a similar structure to those known in other species from the genus, which possess the suction trap mechanism. Glands near the entrance in U. multifida and U. westonii, which are responsible for water pumping in other species, are typically developed as in other species in the genus and have pedestal cells which are transfer cells. The transfer cells also occur in glands of the pavement epithelium, which is again typically developed as in other species in the genus. Simple biophysical tests did not confirm reliably neither the negative underpressure formation in the traps nor the watertightness of the entrance in both species. Our anatomical results indirectly support the hypothesis that both species have suction traps like all other Utricularia species, but the biophysical data rather suggest a passive valve mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...