Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-27174801

RESUMO

Astrocytes secrete vasodilator and vasoconstrictor factors via end feet processes, altering blood flow to meet neuronal metabolic demand. Compared to what is known about the ability of astrocytes to release factors that dilate local cerebral vasculature, very little is known regarding the source and identity of astrocyte derived constricting factors. The present study investigated if astrocytes express CYP 4A ω-hydroxylase and metabolize arachidonic acid (AA) to 20-hydroxyeicotetraenoic acid (20-HETE) that regulates KCa channel activity in astrocytes and cerebral arterial myocyte contractility. Here we report that cultured astrocytes express CYP 4A2/3 ω-hydroxylase mRNA and CYP 4A protein and produce 20-HETE and the CYP epoxygenase metabolites epoxyeicosatrienoic acids (EETs) when incubated with AA. The production of 20-HETE and EETs was enhanced following stimulation of metabotropic glutamate receptors (mGluR) on the astrocytes. Exogenous application of 20-HETE attenuated, whereas inhibition of 20-HETE production with HET-0016 increased the open state probabilities (NPo) of 71pS and 161pS KCa single-channel currents recorded from astrocytes. Exposure of isolated cerebral arterial myocytes to conditioned media from cultured astrocytes caused shortening of the length of freshly isolated cerebral arterial myocytes that was not evident following inhibition of astrocyte 20-HETE synthesis and action. These findings suggest that astrocytes not only release vasodilator EETs in response to mGluR stimulation but also synthetize and release the cerebral arterial myocyte constrictor 20-HETE that also functions as an endogenous inhibitor of the activity of two types of KCa channel currents found in astrocytes.


Assuntos
Astrócitos/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Ácidos Hidroxieicosatetraenoicos/biossíntese , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Ácido Araquidônico/administração & dosagem , Ácido Araquidônico/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Encéfalo/metabolismo , Circulação Cerebrovascular/genética , Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica , Ácidos Hidroxieicosatetraenoicos/metabolismo , Músculo Liso Vascular/metabolismo , Ratos , Receptores de Glutamato Metabotrópico/genética
2.
Am J Physiol Cell Physiol ; 307(11): C989-98, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25055826

RESUMO

Mammals have circadian variation in blood pressure, heart rate, vascular tone, thrombotic tendency, and cerebral blood flow (CBF). These changes may be in part orchestrated by circadian variation in clock gene expression within cells comprising the vasculature that modulate blood flow (e.g., fibroblasts, cerebral vascular smooth muscle cells, astrocytes, and endothelial cells). However, the downstream mechanisms that underlie circadian changes in blood flow are unknown. Cytochrome P450 epoxygenases (Cyp4x1 and Cyp2c11) are expressed in the brain and vasculature and metabolize arachidonic acid (AA) to form epoxyeicosatrienoic acids (EETs). EETs are released from astrocytes, neurons, and vascular endothelial cells and act as potent vasodilators, increasing blood flow. EETs released in response to increases in neural activity evoke a corresponding increase in blood flow known as the functional hyperemic response. We examine the hypothesis that Cyp2c11 and Cyp4x1 expression and EETs production vary in a circadian manner in the rat brain and cerebral vasculature. RT-PCR revealed circadian/diurnal expression of clock and clock-controlled genes as well as Cyp4x1 and Cyp2c11, within the rat hippocampus, middle cerebral artery, inferior vena cava, hippocampal astrocytes and rat brain microvascular endothelial cells. Astrocyte and endothelial cell culture experiments revealed rhythmic variation in Cyp4x1 and Cyp2c11 gene and protein expression with a 12-h period and parallel rhythmic production of EETs. Our data suggest there is circadian regulation of Cyp4x1 and Cyp2c11 gene expression. Such rhythmic EETs production may contribute to circadian changes in blood flow and alter risk of adverse cardiovascular events throughout the day.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Encéfalo/enzimologia , Ritmo Circadiano/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Células Endoteliais/enzimologia , Esteroide 16-alfa-Hidroxilase/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Astrócitos/citologia , Astrócitos/enzimologia , Encéfalo/irrigação sanguínea , Células Cultivadas , Sequência Conservada , Sistema Enzimático do Citocromo P-450/genética , Família 2 do Citocromo P450 , Regulação Enzimológica da Expressão Gênica/fisiologia , Masculino , Regiões Promotoras Genéticas , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Esteroide 16-alfa-Hidroxilase/genética
3.
J Appl Physiol (1985) ; 114(2): 252-61, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23172031

RESUMO

The present study examined the role of the dual-specificity protein phosphatase-5 (DUSP-5) in the pressure-induced myogenic responses of organ-cultured cerebral arterial segments. In these studies, we initially compared freshly isolated and organ-cultured cerebral arterial segments with respect to responses to step increases in intravascular pressure, vasodilator and vasoconstrictor stimuli, activities of the large-conductance arterial Ca(2+)-activated K(+) (K(Ca)) single-channel current, and stable protein expression of DUSP-5 enzyme. The results demonstrate maintained pressure-dependent myogenic vasoconstriction, DUSP-5 protein expression, endothelium-dependent and -independent dilations, agonist-induced constriction, and unitary K(Ca) channel conductance in organ-cultured cerebral arterial segments similar to that in freshly isolated cerebral arteries. Furthermore, using a permeabilization transfection technique in organ-cultured cerebral arterial segments, gene-specific small interfering RNA (siRNA) induced knockdown of DUSP-5 mRNA and protein, which were associated with enhanced pressure-dependent cerebral arterial myogenic constriction and increased phosphorylation of PKC-ßII. In addition, siRNA knockdown of DUSP-5 reduced levels of phosphorylated ROCK and ERK1 with no change in the level of phosphorylated ERK2. Pharmacological inhibition of ERK1/2 phosphorylation significantly attenuated pressure-induced myogenic constriction in cerebral arteries. The findings within the present studies illustrate that DUSP-5, native in cerebral arterial muscle cells, appears to regulate signaling of pressure-dependent myogenic cerebral arterial constriction, which is crucial for the maintenance of constant cerebral blood flow to the brain.


Assuntos
Artérias Cerebrais/fisiologia , Circulação Cerebrovascular/fisiologia , Fosfatases de Especificidade Dupla/fisiologia , Desenvolvimento Muscular/fisiologia , Músculo Liso Vascular/fisiologia , Vasoconstrição/fisiologia , Animais , Encéfalo/fisiologia , Células Cultivadas , Artérias Cerebrais/citologia , Fosfatases de Especificidade Dupla/efeitos dos fármacos , Fosfatases de Especificidade Dupla/genética , Masculino , Modelos Animais , Músculo Liso Vascular/citologia , Técnicas de Patch-Clamp , Canais de Potássio Cálcio-Ativados/fisiologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...