Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
PLoS Biol ; 16(10): e2005924, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30335746

RESUMO

The heart exhibits the highest basal oxygen (O2) consumption per tissue mass of any organ in the body and is uniquely dependent on aerobic metabolism to sustain contractile function. During acute hypoxic states, the body responds with a compensatory increase in cardiac output that further increases myocardial O2 demand, predisposing the heart to ischemic stress and myocardial dysfunction. Here, we test the utility of a novel engineered protein derived from the heme-based nitric oxide (NO)/oxygen (H-NOX) family of bacterial proteins as an O2 delivery biotherapeutic (Omniox-cardiovascular [OMX-CV]) for the hypoxic myocardium. Because of their unique binding characteristics, H-NOX-based variants effectively deliver O2 to hypoxic tissues, but not those at physiologic O2 tension. Additionally, H-NOX-based variants exhibit tunable binding that is specific for O2 with subphysiologic reactivity towards NO, circumventing a significant toxicity exhibited by hemoglobin (Hb)-based O2 carriers (HBOCs). Juvenile lambs were sedated, mechanically ventilated, and instrumented to measure cardiovascular parameters. Biventricular admittance catheters were inserted to perform pressure-volume (PV) analyses. Systemic hypoxia was induced by ventilation with 10% O2. Following 15 minutes of hypoxia, the lambs were treated with OMX-CV (200 mg/kg IV) or vehicle. Acute hypoxia induced significant increases in heart rate (HR), pulmonary blood flow (PBF), and pulmonary vascular resistance (PVR) (p < 0.05). At 1 hour, vehicle-treated lambs exhibited severe hypoxia and a significant decrease in biventricular contractile function. However, in OMX-CV-treated animals, myocardial oxygenation was improved without negatively impacting systemic or PVR, and both right ventricle (RV) and left ventricle (LV) contractile function were maintained at pre-hypoxic baseline levels. These data suggest that OMX-CV is a promising and safe O2 delivery biotherapeutic for the preservation of myocardial contractility in the setting of acute hypoxia.


Assuntos
Heme/uso terapêutico , Hipóxia/terapia , Oxigênio/uso terapêutico , Animais , Terapia Biológica/métodos , Coração/fisiologia , Frequência Cardíaca/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Pulmão , Contração Muscular/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/uso terapêutico , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Engenharia de Proteínas/métodos , Ovinos , Resistência Vascular/efeitos dos fármacos
3.
Trends Biochem Sci ; 31(4): 231-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16530415

RESUMO

Nitric oxide (NO) triggers various physiological responses in numerous tissues by binding and activating soluble guanylate cyclase (sGC) to produce the second messenger cGMP. In vivo, basal NO/cGMP signaling maintains a resting state in target cells (for example, resting tone in smooth muscle), but an acute burst of NO/cGMP signaling triggers rapid responses (such as smooth muscle relaxation). Recent studies have shown that the sGC heterodimer comprises at least four modular domains per subunit. The N-terminal heme domain is a member of the H-NOX family of domains that bind O(2) and/or NO and are conserved in prokaryotes and higher eukaryotes. Studies of these domains have uncovered the molecular basis for ligand discrimination by sGC. Other work has identified two temporally distinct states of sGC activation by NO: formation of a stable NO-heme complex results in a low-activity species, and additional NO produces a transient fully active enzyme. Nucleotides also allosterically modulate the duration and intensity of enzyme activity. Together, these studies suggest a biochemical basis for the two distinct types of NO/cGMP signal observed in vivo.


Assuntos
Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Animais , GMP Cíclico/metabolismo , Heme/metabolismo , Humanos , Modelos Químicos , Óxido Nítrico Sintase/metabolismo
4.
Proc Natl Acad Sci U S A ; 102(37): 13064-9, 2005 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-16131543

RESUMO

Nitric oxide (NO) affects many physiological systems by activating cGMP signaling cascades through soluble guanylate cyclase (sGC). In the accepted model, NO binds to the sGC heme, activating the enzyme. Here, we report that in the presence of physiological concentrations of ATP and GTP, NO dissociation from the sGC heme is approximately 160 times slower than the rate of enzyme deactivation in vitro. Deactivated sGC still has NO bound to the heme, and full activation requires additional NO. We propose an activation model where, in the presence of both ATP and GTP, tonic NO forms a stable heme complex with low sGC activity; acute production of NO transiently and fully activates this NO-bound sGC.


Assuntos
Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Trifosfato de Adenosina , Animais , Ativação Enzimática , Guanosina Trifosfato , Heme/metabolismo , Cinética , Modelos Químicos , Óxido Nítrico/fisiologia , Ratos , Solubilidade
5.
FASEB J ; 18(11): 1312-4, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15180962

RESUMO

Many cardiovascular disease states end in progressive heart failure. Changes in intracellular calcium handling, including a reduced activity of the sarcoplasmic reticulum calcium pump (SERCA), contribute to this contractile dysfunction. As the regulatory protein phospholamban can inhibit the calcium pump, we evaluated it as a potential target to improve cardiac function. In this study, we describe a recombinant antibody-based protein (PLN-Ab) that binds to the cytoplasmic domain of phospholamban. Fluorescence resonance energy transfer (FRET) studies suggest that PLN-Ab mimics the effects of phospholamban phosphorylation. PLN-Ab accelerated the decay of the calcium transient when expressed in neonatal rat and adult mouse ventricular cardiac myocytes. In addition, direct injection of adenovirus encoding PLN-Ab into the diabetic mouse heart enhanced contractility when measured in vivo by echocardiography and in ex vivo Langendorff perfused hearts. The PLN-Ab provides a novel therapeutic approach to improving contractility through in vivo expression of an antibody inside cardiac myocytes.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/química , Cardiotônicos/farmacologia , Terapia Genética , Insuficiência Cardíaca/terapia , Imunoglobulinas/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Sequência de Bases , ATPases Transportadoras de Cálcio/metabolismo , Cardiotônicos/química , Linhagem Celular/efeitos dos fármacos , Galinhas , Diabetes Mellitus Experimental/metabolismo , Transferência Ressonante de Energia de Fluorescência , Insuficiência Cardíaca/diagnóstico por imagem , Ventrículos do Coração/citologia , Humanos , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Rim , Camundongos , Mimetismo Molecular , Dados de Sequência Molecular , Miócitos Cardíacos/fisiologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...