Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 31(4): 231-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16530415

RESUMO

Nitric oxide (NO) triggers various physiological responses in numerous tissues by binding and activating soluble guanylate cyclase (sGC) to produce the second messenger cGMP. In vivo, basal NO/cGMP signaling maintains a resting state in target cells (for example, resting tone in smooth muscle), but an acute burst of NO/cGMP signaling triggers rapid responses (such as smooth muscle relaxation). Recent studies have shown that the sGC heterodimer comprises at least four modular domains per subunit. The N-terminal heme domain is a member of the H-NOX family of domains that bind O(2) and/or NO and are conserved in prokaryotes and higher eukaryotes. Studies of these domains have uncovered the molecular basis for ligand discrimination by sGC. Other work has identified two temporally distinct states of sGC activation by NO: formation of a stable NO-heme complex results in a low-activity species, and additional NO produces a transient fully active enzyme. Nucleotides also allosterically modulate the duration and intensity of enzyme activity. Together, these studies suggest a biochemical basis for the two distinct types of NO/cGMP signal observed in vivo.


Assuntos
Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Animais , GMP Cíclico/metabolismo , Heme/metabolismo , Humanos , Modelos Químicos , Óxido Nítrico Sintase/metabolismo
2.
Proc Natl Acad Sci U S A ; 102(37): 13064-9, 2005 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-16131543

RESUMO

Nitric oxide (NO) affects many physiological systems by activating cGMP signaling cascades through soluble guanylate cyclase (sGC). In the accepted model, NO binds to the sGC heme, activating the enzyme. Here, we report that in the presence of physiological concentrations of ATP and GTP, NO dissociation from the sGC heme is approximately 160 times slower than the rate of enzyme deactivation in vitro. Deactivated sGC still has NO bound to the heme, and full activation requires additional NO. We propose an activation model where, in the presence of both ATP and GTP, tonic NO forms a stable heme complex with low sGC activity; acute production of NO transiently and fully activates this NO-bound sGC.


Assuntos
Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Trifosfato de Adenosina , Animais , Ativação Enzimática , Guanosina Trifosfato , Heme/metabolismo , Cinética , Modelos Químicos , Óxido Nítrico/fisiologia , Ratos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...