Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896379

RESUMO

Mixed matrix membranes (MMMs) provide the opportunity to test new porous materials in challenging applications. A series of low-cost porous organic polymer (POPs) networks, possessing tunable porosity and high CO2 uptake, has been obtained by aromatic electrophilic substitution reactions of biphenyl, 9,10-dihydro-9,10-dimethyl-9,10-ethanoanthracene (DMDHA), triptycene and 1,3,5-triphenylbenzene (135TPB) with dimethoxymethane (DMM). These materials have been characterized by FTIR, 13C NMR, WAXD, TGA, SEM, and CO2 uptake. Finally, different loadings of these POPs have been introduced into Matrimid, Pebax, and chitosan:polyvinyl alcohol blends as polymeric matrices to prepare MMMs. The CO2/CH4 separation performance of these MMMs has been evaluated by single and mixed gas permeation experiments at 4 bar and room temperature. The effect of the porosity of the porous fillers on the membrane separation behavior and the compatibility between them and the different polymer matrices on membrane design and fabrication has been studied by Maxwell model equations as a function of the gas permeability of the pure polymers, porosity, and loading of the fillers in the MMMs. Although the gas transport properties showed an increasing deviation from ideal Maxwell equation prediction with increasing porosity of the POP fillers and increasing hydrophilicity of the polymer matrices, the behavior of biopolymer-based CS:PVA MMMs approached that of Pebax-based MMMs, giving scope to not only new filler materials but also sustainable polymer choices to find a place in membrane technology.

2.
Membranes (Basel) ; 13(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623793

RESUMO

This Special Issue of the journal Membranes arises from the need to highlight the developments in the field of membrane research and membrane processes that have been emerging in recent years by researchers and research groups based in the Iberian Peninsula [...].

3.
J Dairy Sci ; 106(7): 4533-4544, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225584

RESUMO

The continuously increasing demand of lactic acid opens a window for the integration of membrane technology in the dairy industry, improving the sustainability by avoiding the use of large amounts of chemicals and waste generation. Lactic acid recovery from fermentation broth without precipitation has been studied by numerous processes. In this work, a commercial membrane with high lactose rejection and a moderate lactic acid rejection, enabling a permselectivity up to 40%, is sought to perform the simultaneous removal of lactic acid and lactose separation from the acidified sweet whey from mozzarella cheese production in a single stage. The AFC30 membrane of the thin film composite nanofiltration (NF) type was selected because of its high negative charge, low isoelectric point, and divalent ion rejection, as well as a lactose rejection higher than 98% and a lactic acid rejection lower than 37%, at pH 3.5, to minimize the need of additional separation steps. The experimental lactic acid rejection was evaluated at varying feed concentration, pressure, temperature, and flow rate. As the dissociation degree of lactic acid is negligible in industrially simulated conditions, the performance of this NF membrane was validated by the irreversible thermodynamic Kedem-Katchalsky and Spiegler-Kedem models, with the best prediction in the latter case, with the parameter values: Lp = 3.24 ± 0.87 L × m-2 × h-1 × bar-1 and = 15.06 ± 3.17 L × m-2 × h-1, and σ = 0.45 ± 0.03. The results obtained in this work open the way for the up-scaling of membrane technology on the valorization of dairy effluents by simplifying the operation process and the model prediction and the choice of the membrane.


Assuntos
Queijo , Soro do Leite , Animais , Lactose , Ácido Láctico , Membranas Artificiais , Proteínas do Soro do Leite
4.
Membranes (Basel) ; 12(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36005698

RESUMO

This work explores the potential of novel renewable materials in electrode fabrication for the electrochemical conversion of carbon dioxide (CO2) to ethylene in alkaline media. In this regard, the use of the renewable chitosan (CS) biopolymer as ion-exchange binder of the copper (Cu) electrocatalyst nanoparticles (NPs) is compared with commercial anion-exchange binders Sustainion and Fumion on the fabrication of gas diffusion electrodes (GDEs) for the electrochemical reduction of carbon dioxide (CO2R) in an alkaline medium. They were tested in membrane electrode assemblies (MEAs), where selectivity to ethylene (C2H4) increased when using the Cu:CS GDE compared to the Cu:Sustainion and Cu:Fumion GDEs, respectively, with a Faradaic efficiency (FE) of 93.7% at 10 mA cm-2 and a cell potential of -1.9 V, with a C2H4 production rate of 420 µmol m-2 s-1 for the Cu:CS GDE. Upon increasing current density to 90 mA cm-2, however, the production rate of the Cu:CS GDE rose to 509 µmol/m2s but the FE dropped to 69% due to increasing hydrogen evolution reaction (HER) competition. The control of mass transport limitations by tuning up the membrane overlayer properties in membrane coated electrodes (MCE) prepared by coating a CS-based membrane over the Cu:CS GDE enhanced its selectivity to C2H4 to a FE of 98% at 10 mA cm-2 with negligible competing HER. The concentration of carbon monoxide was below the experimental detection limit irrespective of the current density, with no CO2 crossover to the anodic compartment. This study suggests there may be potential in sustainable alernatives to fossil-based or perfluorinated materials in ion-exchange membrane and electrode fabrication, which constitute a step forward towards decarbonization in the circular economy perspective.

5.
Membranes (Basel) ; 12(6)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35736267

RESUMO

Alternative materials are needed to tackle the sustainability of membrane fabrication in light of the circular economy, so that membrane technology keeps playing a role as sustainable technology in CO2 separation processes. In this work, chitosan (CS)-based mixed matrix thin layers have been coated onto commercial polyethersulfone (PES) supports. The CS matrix was loaded by non-toxic 1-Ethyl-3-methylimidazolium acetate ionic liquid (IL) and/or laminar nanoporous AM-4 and UZAR-S3 silicates prepared without costly organic surfactants to improve CO2 permselectivity and mechanical robustness. The CO2/CH4 separation behavior of these membranes was evaluated experimentally at different feed gas composition (CO2/CH4 feed mixture from 20:80 to 70:30%), covering different separation applications associated with this separation. A cross-flow membrane cell model built using Aspen Custom Modeler was used to validate the process performance and relate the membrane properties with the target objectives of CO2 and CH4 recovery and purity in the permeate and retentate streams, respectively. The purely organic IL-CS and mixed matrix AM-4:IL-CS composite membranes showed the most promising results in terms of CO2 and CH4 purity and recovery. This is correlated with their higher hydrophilicity and CO2 adsorption and lower swelling degree, i.e., mechanical robustness, than UZAR-S3 loaded composite membranes. The purity and recovery of the 10 wt.% AM-4:IL-CS/PES composite membrane were close or even surpassed those of the hydrophobic commercial membrane used as reference. This work provides scope for membranes fabricated from renewable or biodegradable polymers and non-toxic fillers that show at least comparable CO2/CH4 separation as existing membranes, as well as the simultaneous feedback on membrane development by the simultaneous correlation of the process requirements with the membrane properties to achieve those process targets.

6.
Ind Eng Chem Res ; 61(23): 8149-8165, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35726248

RESUMO

Within the current climate emergency framework and in order to avoid the most severe consequences of global warming, membrane separation processes have become critical for the implementation of carbon capture, storage, and utilization technologies. Mixtures of CO2 and CH4 are relevant energy resources, and the design of innovative membranes specifically designed to improve their separation is a hot topic. This work investigated the potential of modified polydimethylsiloxane and ionic liquid-chitosan composite membranes for separation of CO2 and CH4 mixtures from different sources, such as biogas upgrading, natural gas sweetening, or CO2 enhanced oil recovery. The techno-economic optimization of multistage processes at a real industrial scale was carried out, paying special attention to the identification of the optimal configuration of the hollow fiber modules and the selection of the best membrane scheme. The results demonstrated that a high initial content of CH4 in the feed stream (like in the case of natural gas sweetening) might imply a great challenge for the separation performance, where only membranes with exceptional selectivity might achieve the requirements in a two-stage process. The effective lifetime of the membranes is a key parameter for the successful implementation of innovative membranes in order to avoid severe economic penalties due to excessively frequent membrane replacement. The scale of the process had a great influence on the economic competitiveness of the process, but large-scale installations can operate under competitive conditions with total costs below 0.050 US$ per m3 STP of treated feed gas.

7.
Membranes (Basel) ; 11(11)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34832037

RESUMO

The following review aims at analyzing the contribution of Spanish researchers to membrane science and technology, with a historical compilation of the main milestones. We used a bibliometric analysis based on the Scopus database (1960-2020) dealing with 8707 documents covering the different disciplines and subject areas where membranes are involved. Furthermore, the information has been updated to the present moment of writing this manuscript in order to include the latest research lines and the different research groups currently active in Spain, which may lead the way to the development of the field in the coming years.

8.
Membranes (Basel) ; 10(12)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302433

RESUMO

Membrane technology is a simple and energy-conservative separation option that is considered to be a green alternative for CO2 capture processes. However, commercially available membranes still face challenges regarding water and chemical resistance. In this study, the effect of water and organic contaminants in the feed stream on the CO2/CH4 separation performance is evaluated as a function of the hydrophilic and permselective features of the top layer of the membrane. The membranes were a commercial hydrophobic membrane with a polydimethylsiloxane (PDMS) top layer (Sulzer Chemtech) and a hydrophilic flat composite membrane with a hydrophilic [emim][ac] ionic liquid-chitosan (IL-CS) thin layer on a commercial polyethersulfone (PES) support developed in our laboratory. Both membranes were immersed in NaOH 1M solutions and washed thoroughly before characterization. The CO2 permeance was similar for both NaOH-treated membranes in the whole range of feed concentration (up to 250 GPU). The presence of water vapor and organic impurities of the feed gas largely affects the gas permeance through the hydrophobic PDMS membrane, while the behavior of the hydrophilic IL-CS/PES membranes is scarcely affected. The effects of the interaction of the contaminants in the membrane selective layer are being further evaluated.

9.
Membranes (Basel) ; 9(11)2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31717663

RESUMO

In recent decades, mixed matrix membranes (MMMs) have attracted considerable interest in research laboratories worldwide, motivated by the gap between the growing interest in developing novel mixed matrix membranes by various research groups and the lack of large-scale implementation. This Special Issue contains six publications dealing with the current opportunities and challenges of mixed matrix membranes development and applications as solutions for the environmental and health challenges of 21st century society.

10.
Membranes (Basel) ; 10(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905891

RESUMO

In this work, the performance of new robust mixed matrix composite hollow fiber (MMCHF) membranes with a different selective layer composition is evaluated in the absence and presence of water vapor in CO2/N2 and CO2/CH4 separation. The selective layer of these membranes is made of highly permeable hydrophobic poly(trimethyl-1-silylpropine) (PTMSP) and hydrophilic chitosan-ionic liquid (IL-CS) hybrid matrices, respectively, filled with hydrophilic zeolite 4A particles in the first case and HKUST-1 nanoparticles in the second, coated over compatible supports. The effect of water vapor in the feed or using a commercial hydrophobic PDMSXA-10 HF membrane has also been studied for comparison. Mixed gas separation experiments were performed at values of 0 and 50% relative humidity (RH) in the feed and varying CO2 concentration in N2 and CH4, respectively. The performance has been validated by a simple mathematical model considering the effect of temperature and relative humidity on membrane permeability.

11.
Membranes (Basel) ; 8(2)2018 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-29914166

RESUMO

In the present work, the effect of zeolite type and topology on CO2 and N2 permeability using zeolites of different topology (CHA, RHO, and LTA) in the same Si/Al = 5, embedded in poly(trimethylsilyl-1-propyne) (PTMSP) is evaluated with temperature. Several models are compared on the prediction of CO2/N2 separation performance and then the modified Maxwell models are selected. The CO2 and N2 permeabilities through these membranes are predicted with an average absolute relative error (AARE) lower than 0.6% taking into account the temperature and zeolite loading and topology on non-idealities such as membrane rigidification, zeolite⁻polymer compatibility and sieve pore blockage. The evolution of this structure⁻performance relationship with temperature has also been predicted.

12.
Polymers (Basel) ; 10(8)2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30960838

RESUMO

The physicochemical and mechanical properties of new alkaline anion-exchange membranes (AAEMs) based on chitosan (CS) and poly(vinyl alcohol) (PVA) polymers doped with unsupported copper nanoparticles (NPs) and copper exchanged over different porous materials were investigated regarding ion-exchange capacity (IEC), OH- conductivity, water uptake (WU), water vapor permeability (WVP), and thermal and mechanical resistance. The influence of the type of filler included in different morphologies and filler loading has been explored using copper exchanged materials such as the layered porous titanosilicate AM-4, layered stannosilicate UZAR-S3, and zeolites Y, MOR, and BEA. Compared to commercially available anion-exchange membranes, the best performing membranes in terms of WU, IEC, OH- conductivity and WVP in this study were those containing 10 wt % of Cu-AM-4 and Cu-UZAR-S3, although 10 wt % Cu-MOR provided better mechanical strength at close values of WVP and anion conductivity. It was also observed that when Cu was exchanged in a porous silicate matrix, its oxidation state was lower than when embedded as unsupported metal NPs. In addition, the statistical analysis of variance determined that the electrochemical properties of the membranes were noticeably affected by both the type and filler loading, and influenced also by the copper oxidation state and content in the membrane, but their hydrophilic properties were more affected by the polymers. The largest significant effects were noticed on the water sorption and transport properties, which gives scope for the design of AAEMs for electrochemical and water treatment applications.

13.
RSC Adv ; 8(7): 3536-3546, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35542925

RESUMO

Increasing the knowledge of the influence of water vapor in new mixed matrix membranes (MMMs) could favor the integration of novel membrane materials in the recovery of CO2 from wet industrial streams. In this work, the water vapor effect on the N2, CH4 and CO2 permeability through MMMs comprised of 20 wt% hydrophilic zeolite 4A in hydrophobic PTMSP polymer were investigated in the relative humidity range 0-75%. While in the pure PTMSP membranes, the permeability of all gases decreases with water vapor activity, with almost unchanged CO2/N2 and CO2/CH4 selectivities, in zeolite A/PTMSP MMMs, the CO2 permeability increases with increasing water content in the system up to 50% R.H., resulting in an increase in CO2/N2 and CO2/CH4 selectivities with respect to pure PTMSP. Gas sorption was studied so that the effect the residual humidity in the zeolite 4A has on the sorption of the different gases helped explaining the permeability observations. The sorption and humid permeation behavior were evaluated by a simple model equation based on the NELF theory, taking into account the multicomponent gas sorption and diffusion in the presence of humidity, as well as the counteracting effects of the hydrophobic PTMSP and hydrophilic zeolite A in a very accurate way.

14.
Membranes (Basel) ; 6(2)2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27196937

RESUMO

In this work, mixed matrix membranes (MMMs) composed of small-pore zeolites with various topologies (CHA (Si/Al = 5), LTA (Si/Al = 1 and 5), and Rho (Si/Al = 5)) as dispersed phase, and the hugely permeable poly(1-trimethylsilyl-1-propyne) (PTMSP) as continuous phase, have been synthesized via solution casting, in order to obtain membranes that could be attractive for oxygen-enriched air production. The O2/N2 gas separation performance of the MMMs has been analyzed in terms of permeability, diffusivity, and solubility in the temperature range of 298-333 K. The higher the temperature of the oxygen-enriched stream, the lower the energy required for the combustion process. The effect of temperature on the gas permeability, diffusivity, and solubility of these MMMs is described in terms of the Arrhenius and Van't Hoff relationships with acceptable accuracy. Moreover, the O2/N2 permselectivity of the MMMs increases with temperature, the O2/N2 selectivities being considerably higher than those of the pure PTMSP. In consequence, most of the MMMs prepared in this work exceeded the Robeson's upper bound for the O2/N2 gas pair in the temperature range under study, with not much decrease in the O2 permeabilities, reaching O2/N2 selectivities of up to 8.43 and O2 permeabilities up to 4,800 Barrer at 333 K.

15.
Membranes (Basel) ; 4(2): 287-301, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24957178

RESUMO

Mixed matrix membranes (MMMs) were prepared by incorporating organic surfactant-free hydrothermally synthesised ETS-10 and 1-ethyl-3-methylimidazolium acetate ionic liquid (IL) to chitosan (CS) polymer matrix. The membrane material characteristics and permselectivity performance of the two-component membranes were compared with the three-component membrane and the pure CS membrane. The addition of IL increased CO2 solubility of the polymer, and, thus, the CO2 affinity was maintained for the MMMs, which can be correlated with the crystallinity, measured by FT-IR, and void fraction calculations from differences between theoretical and experimental densities. The mechanical resistance was enhanced by the ETS-10 nanoparticles, and flexibility decreased in the two-component ETS-10/CS MMMs, but the flexibility imparted by the IL remained in three-component ETS-10/IL/CS MMMs. The results of this work provide insight into another way of facing the adhesion challenge in MMMs and obtain CO2 selective MMMs from renewable or green chemistry materials.

16.
Biomed Res Int ; 2014: 287896, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24719852

RESUMO

Retinal stem cells (RSCs) are promising in cell replacement strategies for retinal diseases. RSCs can migrate, differentiate, and integrate into retina. However, RSCs transplantation needs an adequate support; chitosan membrane (ChM) could be one, which can carry RSCs with high feasibility to support their integration into retina. RSCs were isolated, evaluated for phenotype, and subsequently grown on sterilized ChM and polystyrene surface for 8 hours, 1, 4, and 11 days for analysing cell adhesion, proliferation, viability, and phenotype. Isolated RSCs expressed GFAP, PKC, isolectin, recoverin, RPE65, PAX-6, cytokeratin 8/18, and nestin proteins. They adhered (28 ± 16%, 8 hours) and proliferated (40 ± 20 cells/field, day 1 and 244 ± 100 cells/field, day 4) significantly low (P < 0.05) on ChM. However, they maintained similar viability (>95%) and phenotype (cytokeratin 8/18, PAX6, and nestin proteins expression, day 11) on both surfaces (ChM and polystyrene). RSCs did not express alpha-SMA protein on both surfaces. RSCs express proteins belonging to epithelial, glial, and neural cells, confirming that they need further stimulus to reach a final destination of differentiation that could be provided in in vivo condition. ChM does not alternate RSCs behaviour and therefore can be used as a cell carrier so that slow proliferating RSCs can migrate and integrate into retina.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quitosana/química , Retina/transplante , Células-Tronco/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Quitosana/farmacologia , Membranas/química , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fenótipo , Retina/citologia , Retina/crescimento & desenvolvimento , Transplante de Células-Tronco , Células-Tronco/citologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...