Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241317

RESUMO

The equiatomic high-entropy alloy of composition of CrNiCoFeMn with an FCC crystal structure was prepared by either induction melting or additive manufacturing with a selective laser melting (SLM) process, starting from mechanically alloyed powders. The as-produced samples of both kinds were cold worked, and in some cases re-crystallized. Unlike induction melting, there is a second phase, which is made of fine nitride and Cr-rich σ phase precipitates, in the as-produced SLM alloy. Young's modulus and damping measurements, as a function of temperature in the 300-800 K range, were performed on the specimens that were cold-worked and/or re-crystallized. Young's modulus values of (140 ± 10) GPa and (90 ± 10) GPa were measured from the resonance frequency of free-clamped bar-shaped samples at 300 K for the induction-melted and SLM samples, respectively. The room temperature values increased to (160 ± 10) GPa and (170 ± 10) GPa for the re-crystallized samples. The damping measurements showed two peaks, which were attributed to dislocation bending and grain-boundary sliding. The peaks were superposed on an increasing temperature background.

2.
Materials (Basel) ; 15(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36013680

RESUMO

The high entropy alloy (HEA) of equiatomic composition CrNiFeCoMn and with FCC crystal structure was additively manufactured in a selective laser melting (SLM) process starting from mechanically alloyed powders. The as-produced alloy shows fine nitride and σ phase precipitates, which are Cr-rich and stable up to about 900 K. The precipitates increase in number and dimensions after long-period annealing at 900-1300 K, with a change in the HEA mechanical properties. Higher aging temperatures in the furnace, above 1300 K, turn the alloy into a single FCC structure, with the disappearance of the nitride and σ phase precipitates inside the grains and at the grain boundaries, but still with the presence of a finer Cr-rich nitride precipitation phase. These results suggest that the as-produced HEA is a supersaturated solid solution at low and intermediate temperature with nitrides and σ nanostructures.

3.
Materials (Basel) ; 14(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34683586

RESUMO

The effect of Zr addition on the melting temperature of the CoCrFeMnNi High Entropy Alloy (HEA), known as the "Cantor's Alloy", is investigated, together with its micro-structure, mechanical properties and thermomechanical recrystallization process. The base and Zr-modified alloys are obtained by vacuum induction melting of mechanically pre-alloyed powders. Raw materials are then cold rolled and annealed. recrystallization occurred during the heat treatment of the cold-rolled HEA. The alloys are characterized by X-ray diffraction, electron microscopy, thermal analyses, mechanical spectroscopy and indentation measures. The main advantages of Zr addition are: (1) a fast vacuum induction melting process; (2) the lower melting temperature, due to Zr eutectics formation with all the Cantor's alloy elements; (3) the good chemical alloy homogeneity; and (4) the mechanical properties improvement of re-crystallized grains with a coherent structure. The crystallographic lattice of both alloys results in FCC. The Zr-modified HEA presents a higher recrystallization temperature and smaller grain size after recrystallization with respect to the Cantor's alloy, with precipitation of a coherent second phase, which enhances the alloy hardness and strength.

4.
Artigo em Inglês | MEDLINE | ID: mdl-21721328

RESUMO

A simplified model of the microwave-assisted combustion synthesis of Ni and Al metal powders to form the NiAl intermetallic on titanium and steel substrates is presented. The simulation couples an electro-thermal model with a chemical model, accounting for local heat generation due to the highly exothermic nature of the reactions between the powders. Numerical results, validated by experimental values, show that the capability of microwaves to convey energy, and not heat, can be used to alter the temperature profiles during and after the combustion synthesis, leading to unique intermetallic microstructures. This phenomenon is ascribed to the extended existence of high temperature liquid intermetallic phases, which react with the metallic substrates at the interface. Moreover, microwave heating selectivity allows to maintain the bulk of the substrate metallic materials to a much lower temperature, compared to combustion synthesis in conventionally heated furnaces, thus reducing possible unwanted transformations like phase change or oxidation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...