Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JBMR Plus ; 5(9): e10525, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532613

RESUMO

Fracture repair is a normal physiological response to bone injury. During the process of bony callus formation, a lacunocanalicular network (LCN) is formed de novo that evolves with callus remodeling. Our aim was the longitudinal assessment of the development and evolution of the LCN during fracture repair. To this end, 45 adult wild-type C57BL/6 mice underwent closed tibial fracture surgery. Fractured and intact contralateral tibias were harvested after 2, 3, and 6 weeks of bone healing (n = 15/group). High-resolution micro-computed tomography (µCT) and deconvolution microscopy (DV) approaches were applied to quantify lacunar number density from the calluses and intact bone. On histological sections, Goldner's trichrome staining was used to assess lacunar occupancy, fluorescein isothiocyanate staining to visualize the canalicular network, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining to examine osteocyte apoptosis. Analysis of µCT scans showed progressive decreases in mean lacuna volume over time (-27% 2-3 weeks; -13% 3-6 weeks). Lacunar number density increased considerably between 2 and 3 weeks (+156%). Correlation analysis was performed, showing a positive linear relationship between canalicular number density and trabecular thickness (R 2 = 0.56, p < 0.001) and an inverse relationship between mean lacuna volume and trabecular thickness (R 2 = 0.57, p < 0.001). Histology showed increases in canalicular number density over time (+22% 2-3 weeks, +51% 3-6 weeks). Lacunar occupancy in new bone of the callus was high (>90%), but the old cortical bone within the fracture site appeared necrotic as it underwent resorption. In conclusion, our data shows a progressive increase in the complexity of the LCN over time during fracture healing and demonstrates that this network is initiated during the early stages of repair. Further studies are needed to address the functional importance of osteocytes in bone healing, particularly in detecting and translating the effects of micromotion in the fracture. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
J Biomed Opt ; 23(11): 1-6, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30499261

RESUMO

Medical knowledge of the skeleton including its structures has improved constantly over the past decades. Advanced imaging methods, mechanical testing and optical techniques have revealed insights into bone architecture and composition. Most of these advancements were possible due to the ex vivo investigation of biological tissues. Investigations of fresh tissue are generally preferred over preserved or fixed samples. However, chemical fixation is sometimes inevitable due to histological procedures or logistical reasons. The aim of this study was to investigate whether short-term chemical fixation with formaldehyde affects bone quality parameters obtained from Raman spectroscopy and if these effects last for intermediate sample storage of several hours. As formaldehyde induces cross-links to the organic components in bone tissue, we hypothesized that collagen-related parameters are particularly affected. Femurs of eight 17-week-old C57BL/6 mice were extracted and divided into two groups (N = 8 / group). Samples of the first group were fixed by immersion in 4% formaldehyde (PFA-solution) for 12 h at 4°C (fixed group) while samples of the second group were left untreated (unfixed group). Raman spectroscopy was performed, and repeated after 4 h, to assess whether intermediate storage time influenced the obtained results. Based on resultant spectra, mineral-to-matrix ratio, carbonate-to-phosphate ratio, carbonate-to-amide I ratio, mineral crystallinity and collagen maturity were determined. Carbonate-to-phosphate ratio was the only parameter showing a significant difference between the first and the subsequent measurements. For both groups, ratios showed a decrease in carbonate substitution compared to the first measurement (percentage decrease: 3.1% in fixed, 4.7% in unfixed). Collagen maturity of samples, which were short-term fixed with formaldehyde, was significantly lower than of fresh, unfixed samples (percentage difference: 3.8%). Our study shows that Raman spectroscopy is able to detect changes in collagen structure initiated by formaldehyde and that changes in short-term fixed samples are minimally influencing bone material properties measured with Raman spectroscopy.


Assuntos
Colágeno/química , Fêmur , Formaldeído , Técnicas Histológicas/métodos , Análise Espectral Raman/métodos , Animais , Feminino , Fêmur/diagnóstico por imagem , Fêmur/efeitos dos fármacos , Formaldeído/química , Formaldeído/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
3.
R Soc Open Sci ; 4(2): 160971, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28386450

RESUMO

Studies investigating micromechanical properties in mouse cortical bone often solely focus on the mechanical behaviour along the long axis of the bone. Therefore, data on the anisotropy of mouse cortical bone is scarce. The aim of this study is the first-time evaluation of the anisotropy ratio between the longitudinal and transverse directions of reduced modulus and hardness in mouse femurs by using the nanoindentation technique. For this purpose, nine 22-week-old mice (C57BL/6) were sacrificed and all femurs extracted. A total of 648 indentations were performed with a Berkovich tip in the proximal (P), central (C) and distal (D) regions of the femoral shaft in the longitudinal and transverse directions. Higher values for reduced modulus are obtained for indentations in the longitudinal direction, with anisotropy ratios of 1.72 ± 0.40 (P), 1.75 ± 0.69 (C) and 1.34 ± 0.30 (D). Hardness is also higher in the longitudinal direction, with anisotropic ratios of 1.35 ± 0.27 (P), 1.35 ± 0.47 (C) and 1.17 ± 0.19 (D). We observed a significant anisotropy in the micromechanical properties of the mouse femur, but the correlation for reduced modulus and hardness between the two directions is low (r2 < 0.3) and not significant. Therefore, we highly recommend performing independent indentation testing in both the longitudinal and transverse directions when knowledge of the tissue mechanical behaviour along multiple directions is required.

4.
Bone ; 92: 70-78, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27542660

RESUMO

In recent years, great interest in combined treatment of parathyroid hormone (PTH) with anti-resorptive therapy has emerged. PTH has been suggested to aid bridging of atrophic fractures and improve strength in closed fracture models. Bisphosphonate treatments typically result in a larger woven bone callus that is slower to remodel. The combination of both drugs has been demonstrated to be effective for the treatment of osteoporotic bone loss in many preclinical studies. However, the effect of combined treatment on fracture repair is still largely unexplored. In this study, we aimed to compare these drugs as single-agent and in combination in a murine closed fracture model. We wanted to assess potential differences in material properties, morphometry and in the development of the lacuno-canalicular network. A total of 40 female, 11-week-old wild type mice underwent a closed fracture on the midshaft of the tibia and were assigned to four groups (n=8-10 per group). Beginning on post-operative day 8, animals received different subcutaneous injections. Group 1 received a single injection of saline solution and Group 2 of zoledronic acid (ZA). Group 3 received daily dosing of PTH. Group 4 received a dual treatment, starting with a single dose of ZA followed by daily injection of PTH. Three weeks after fracture, all animals were euthanized and tibiae were assessed using micro-computed tomography (micro-CT), high-resolution micro-CT (HR micro-CT), Raman spectroscopy, quantitative histomorphometry, and deconvolution microscopy (DV microscopy). Combined treatment showed a significant increase of 41% in bone volume fraction and a significant decrease of 61% in the standard deviation of the trabecular spacing compared to vehicle, both known to be strong predictors of callus strength. An analysis via HR micro-CT showed similar results on all groups for lacunar numerical density, whereas mean lacuna volume was found to be higher compared to vehicle in treated groups, but only PTH mono-treatment showed a significant increase compared to vehicle (+45%). Raman spectroscopy did not reveal detectable changes in material properties of the bone calluses. Sclerostin staining, tartrate resistant acid phosphatase (TRAP) staining and canalicular analysis with DV microscopy on a subset of samples did not display distinctive difference in any of the treatments. We therefore consider PTH+ZA treatment beneficial for bone healing. No clear negative effect on bone quality was detected during this study.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Calo Ósseo/efeitos dos fármacos , Difosfonatos/administração & dosagem , Consolidação da Fratura/efeitos dos fármacos , Imidazóis/administração & dosagem , Hormônio Paratireóideo/administração & dosagem , Fraturas da Tíbia/tratamento farmacológico , Animais , Calo Ósseo/diagnóstico por imagem , Quimioterapia Combinada , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Análise Espectral Raman/métodos , Fraturas da Tíbia/diagnóstico por imagem , Resultado do Tratamento , Microtomografia por Raio-X/métodos , Ácido Zoledrônico
5.
Bonekey Rep ; 3: 550, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120907

RESUMO

Fracture repair is a complex process that involves the interaction of numerous molecular factors, cell lineages and tissue types. These biological processes allow for an impressive feat of engineering: an elastic soft callus is progressively replaced by a more rigid and mineralized callus. During this reparative phase, the healing bone is exposed to a risk of re-fracture. Bone volume and bone quality are the two major factors determining the strength of the callus. Although both factors are important, often only bone volume is analyzed and reported in preclinical studies. Recent developments in techniques for examining bone quality in the callus will enable the rapid and detailed analysis of its material properties and its microstructure. This review aims to give an overview of the methods available for quantitatively phenotyping the bone callus in preclinical studies such as Raman spectroscopy, nanoindentation, scanning acoustic microscopy, in vivo micro-computed tomography (micro-CT) and high-resolution micro-CT. Consolidated and emerging experimental methods are described with a focus on their applicability, and with examples of their utilization.

6.
Magn Reson Med ; 66(6): 1674-81, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21671266

RESUMO

Prospective right hemidiaphragm navigator (NAV) is commonly used in free-breathing coronary MRI. The NAV results in an increase in acquisition time to allow for resampling of the motion-corrupted k-space data. In this study, we are presenting a joint prospective-retrospective NAV motion compensation algorithm called compressed-sensing motion compensation (CosMo). The inner k-space region is acquired using a prospective NAV; for the outer k-space, a NAV is only used to reject the motion-corrupted data without reacquiring them. Subsequently, those unfilled k-space lines are retrospectively estimated using compressed sensing reconstruction. We imaged right coronary artery in nine healthy adult subjects. An undersampling probability map and sidelobe-to-peak ratio were calculated to study the pattern of undersampling, generated by NAV. Right coronary artery images were then retrospectively reconstructed using compressed-sensing motion compensation for gating windows between 3 and 10 mm and compared with the ones fully acquired within the gating windows. Qualitative imaging score and quantitative vessel sharpness were calculated for each reconstruction. The probability map and sidelobe-to-peak ratio show that the NAV generates a random undersampling k-space pattern. There were no statistically significant differences between the vessel sharpness and subjective score of the two reconstructions. Compressed-sensing motion compensation could be an alternative motion compensation technique for free-breathing coronary MRI that can be used to reduce scan time.


Assuntos
Artefatos , Técnicas de Imagem de Sincronização Cardíaca/métodos , Vasos Coronários/anatomia & histologia , Compressão de Dados/métodos , Aumento da Imagem/métodos , Angiografia por Ressonância Magnética/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Adulto , Algoritmos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...