Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38260566

RESUMO

Background: Principal component analysis (PCA), a standard approach to analysis and visualization of large datasets, is commonly used in biomedical research for detecting similarities and differences among groups of samples. We initially used conventional PCA as a tool for critical quality control of batch and trend effects in multi-omic profiling data produced by The Cancer Genome Atlas (TCGA) project of the NCI. We found, however, that conventional PCA visualizations were often hard to interpret when inter-batch differences were moderate in comparison with intra-batch differences; it was also difficult to quantify batch effects objectively. We, therefore, sought enhancements to make the method more informative in those and analogous settings. Results: We have developed algorithms and a toolbox of enhancements to conventional PCA that improve the detection, diagnosis, and quantitation of differences between or among groups, e.g., groups of molecularly profiled biological samples. The enhancements include (i) computed group centroids; (ii) sample-dispersion rays; (iii) differential coloring of centroids, rays, and sample data points; (iii) trend trajectories; and (iv) a novel separation index (DSC) for quantitation of differences among groups. Conclusions: PCA-Plus has been our most useful single tool for analyzing, visualizing, and quantitating batch effects, trend effects, and class differences in molecular profiling data of many types: mRNA expression, microRNA expression, DNA methylation, and DNA copy number. An early version of PCA-Plus has been used as the central graphical visualization in our MBatch package for near-real-time surveillance of data for analysis working groups in more than 70 TCGA, PanCancer Atlas, PanCancer Analysis of Whole Genomes, and Genome Data Analysis Network projects of the NCI. The algorithms and software are generic, hence applicable more generally to other types of multivariate data as well. PCA-Plus is freely available in a down-loadable R package at our MBatch website.

2.
Cell ; 172(1-2): 205-217.e12, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29307488

RESUMO

Ductal carcinoma in situ (DCIS) is an early-stage breast cancer that infrequently progresses to invasive ductal carcinoma (IDC). Genomic evolution has been difficult to delineate during invasion due to intratumor heterogeneity and the low number of tumor cells in the ducts. To overcome these challenges, we developed Topographic Single Cell Sequencing (TSCS) to measure genomic copy number profiles of single tumor cells while preserving their spatial context in tissue sections. We applied TSCS to 1,293 single cells from 10 synchronous patients with both DCIS and IDC regions in addition to exome sequencing. Our data reveal a direct genomic lineage between in situ and invasive tumor subpopulations and further show that most mutations and copy number aberrations evolved within the ducts prior to invasion. These results support a multiclonal invasion model, in which one or more clones escape the ducts and migrate into the adjacent tissues to establish the invasive carcinomas.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Evolução Clonal , Adulto , Idoso , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Movimento Celular , Exoma , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Invasividade Neoplásica , Análise de Sequência de DNA , Análise de Célula Única
3.
Cancer Res ; 77(21): e23-e26, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092932

RESUMO

Clustered heatmaps are the most frequently used graphics for visualization of molecular profiling data in biology. However, they are generally rendered as static, or only modestly interactive, images. We have now used recent advances in web technologies to produce interactive "next-generation" clustered heatmaps (NG-CHM) that enable extreme zooming and navigation without loss of resolution. NG-CHMs also provide link-outs to additional information sources and include other features that facilitate deep exploration of the biology behind the image. Here, we describe an implementation of the NG-CHM system in the Galaxy bioinformatics platform. We illustrate the algorithm and available computational tool using RNA-seq data from The Cancer Genome Atlas program's Kidney Clear Cell Carcinoma project. Cancer Res; 77(21); e23-26. ©2017 AACR.


Assuntos
Biologia Computacional/tendências , Internet , Neoplasias/genética , Software , Algoritmos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...