Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 13: 655, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316338

RESUMO

Teneurins are type II transmembrane proteins comprised of four phylogenetically conserved homologs (Ten-1-4) that are highly expressed during neurogenesis. An additional bioactive peptide named teneurin C-terminal-associated peptide (TCAP-1-4) is present at the carboxyl terminal of teneurins. The possible correlation between the Ten/TCAP system and brain injuries has not been explored yet. Thus, this study examined the expression of these proteins in the cerebral cortex after mechanical brain injury. Adult rats were subjected to cerebral cortex injury by needle-insertion lesion and sacrificed at various time points. This was followed by analysis of the lesion area by immunohistochemistry and conventional RT-PCR techniques. Control animals (no brain injury) showed only discrete Ten-2-like immunoreactive pyramidal neurons in the cerebral cortex. In contrast, Ten-2 immunoreactivity was significantly up-regulated in the reactive astrocytes in all brain-injured groups (p < 0.0001) when compared to the control group. Interestingly, reactive astrocytes also showed intense immunoreactivity to LPHN-1, an endogenous receptor for the Ten-2 splice variant named Lasso. Semi-quantitative analysis of Ten-2 and TCAP-2 expression revealed significant increases of both at 48 h, 3 days and 5 days (p < 0.0001) after brain injury compared to the remaining groups. Immortalized cerebellar astrocytes were also evaluated for Ten/TCAP expression and intracellular calcium signaling by fluorescence microscopy after TCAP-1 treatment. Immortalized astrocytes expressed additional Ten/TCAP homologs and exhibited significant increases in intracellular calcium concentrations after TCAP-1 treatment. This study is the first to demonstrate that Ten-2/TCAP-2 and LPHN-1 are upregulated in reactive astrocytes after a mechanical brain injury. Immortalized cerebellar astrocytes expressed Ten/TCAP homologs and TCAP-1 treatment stimulated intracellular calcium signaling. These findings disclose a new functional role of the Ten/TCAP system in astrocytes during tissue repair of the CNS.

2.
Front Neurosci ; 13: 425, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130838

RESUMO

The teneurins are a family of glycosylated type II transmembrane proteins synthesized in several tissue from both vertebrate and invertebrate species. These proteins interact with the latrophilins, a group of adhesion G protein-coupled receptors. Both teneurins and latrophilins may have been acquired by choanoflagellates through horizontal gene transfer from a toxin-target system present in prokaryotes. Teneurins are highly conserved in eukaryotes, with four paralogs (TEN1, TEN2, TEN3, and TEN4) in most vertebrates playing a role in the normal neural development, axonal guiding, synapse formation and synaptic maintenance. In this review, we summarize the main findings concerning the distribution and morphology of the teneurins and latrophilins, both during development and in adult animals. We also briefly discuss the current knowledge in the distribution of the teneurin C-terminal associated protein (TCAP), a peptidergic sequence at the terminal portion of teneurins that may be independently processed and secreted. Through the analysis of anatomical data, we draw parallels to the evolution of those proteins and the increasing complexity of this system, which mirrors the increase in metazoan sensory complexity. This review underscores the need for further studies investigating the distribution of teneurins and latrophilins and the use of different animal models.

3.
Front Neuroanat ; 11: 57, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790894

RESUMO

Urocortin 3 (UCN3) is a neuropeptide member of the corticotropin-releasing factor (CRF) peptide family that acts as a selective endogenous ligand for the CRF, subtype 2 (CRF2) receptor. Immunohistochemistry and in situ hybridization data from rodents revealed UCN3-containing neurons in discrete regions of the central nervous system (CNS), such as the medial preoptic nucleus, the rostral perifornical area (PFA), the medial nucleus of the amygdala and the superior paraolivary nucleus. UCN3-immunoreactive (UCN3-ir) terminals are distributed throughout regions that mostly overlap with regions of CRF2 messenger RNA (mRNA) expression. Currently, no similar mapping exists for non-human primates. To better understand the role of this neuropeptide, we aimed to study the UCN3 distribution in the brains of New World monkeys of the Sapajus genus. To this end, we analyzed the gene and peptide sequences in these animals and performed immunohistochemistry and in situ hybridization to identify UCN3 synthesis sites and to determine the distribution of UCN3-ir terminals. The sequencing of the Sapajus spp. UCN3-coding gene revealed 88% and 65% identity to the human and rat counterparts, respectively. Additionally, using a probe generated from monkey cDNA and an antiserum raised against human UCN3, we found that labeled cells are mainly located in the hypothalamic and limbic regions. UCN3-ir axons and terminals are primarily distributed in the ventromedial hypothalamic nucleus (VMH) and the lateral septal nucleus (LS). Our results demonstrate that UCN3-producing neurons in the CNS of monkeys are phylogenetically conserved compared to those of the rodent brain, that the distribution of fibers agrees with the distribution of CRF2 in other primates and that there is anatomical evidence for the participation of UCN3 in neuroendocrine control in primates.

4.
Mol Cell Neurosci ; 52: 38-50, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23026563

RESUMO

Many neuropsychiatric conditions have a common set of neurological substrates associated with the integration of sensorimotor processing. The teneurins are a recently described family of proteins that play a significant role in visual and auditory development. Encoded on the terminal exon of the teneurin genes is a family of bioactive peptides, termed teneurin C-terminal associated peptides (TCAP), which regulate mood-disorder associated behaviors. Thus, the teneurin-TCAP system could represent a novel neurological system underlying the origins of a number of complex neuropsychiatric conditions. However, it is not known if TCAP-1 exerts its effects as part of a direct teneurin function, whereby TCAP represents a functional region of the larger teneurin protein, or if it has an independent role, either as a splice variant or post-translational proteolytic cleavage product of teneurin. In this study, we show that TCAP-1 can be transcribed as a smaller mRNA transcript. After translation, further processing yields a smaller 15 kDa protein containing the TCAP-1 region. In the mouse hippocampus, immunoreactive (ir) TCAP-1 is exclusively localized to the pyramidal layers of the CA1, CA2 and CA3 regions. Although the localization of TCAP and teneurin in hippocampal regions is similar, they are distinct within the cell as most ir-teneurin is found at the plasma membrane, whereas ir-TCAP-1 is predominantly found in the cytosol. Moreover, in mouse embryonic hippocampal cell culture, FITC-labeled TCAP-1 binds to the plasma membrane and is taken up into the cytosol via dynamin-dependent caveolae-mediated endocytosis. Our data provides novel evidence that TCAP-1 is structurally and functionally distinct from the larger teneurins.


Assuntos
Hipocampo/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo , Sequência de Aminoácidos , Animais , Northern Blotting , Western Blotting , Imunofluorescência , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Biossíntese de Proteínas , Tenascina/química , Tenascina/metabolismo , Transcrição Gênica
5.
BMC Neurosci ; 12: 6, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21232115

RESUMO

BACKGROUND: According to several lines of evidence, the great expansion observed in the primate prefrontal cortex (PfC) was accompanied by the emergence of new cortical areas during phylogenetic development. As a consequence, the structural heterogeneity noted in this region of the primate frontal lobe has been associated with diverse behavioral and cognitive functions described in human and non-human primates. A substantial part of this evidence was obtained using Old World monkeys as experimental model; while the PfC of New World monkeys has been poorly studied. In this study, the architecture of the PfC in five capuchin monkeys (Cebus apella) was analyzed based on four different architectonic tools, Nissl and myelin staining, histochemistry using the lectin Wisteria floribunda agglutinin and immunohistochemistry using SMI-32 antibody. RESULTS: Twenty-two architectonic areas in the Cebus PfC were distinguished: areas 8v, 8d, 9d, 12l, 45, 46v, 46d, 46vr and 46dr in the lateral PfC; areas 11l, 11m, 12o, 13l, 13m, 13i, 14r and 14c in the orbitofrontal cortex, with areas 14r and 14c occupying the ventromedial corner; areas 32r, 32c, 25 and 9m in the medial PfC, and area 10 in the frontal pole. This number is significantly higher than the four cytoarchitectonic areas previously recognized in the same species. However, the number and distribution of these areas in Cebus were to a large extent similar to those described in Old World monkeys PfC in more recent studies. CONCLUSIONS: The present parcellation of the Cebus PfC considerably modifies the scheme initially proposed for this species but is in line with previous studies on Old World monkeys. Thus, it was observed that the remarkable anatomical similarity between the brains of genera Macaca and Cebus may extend to architectonic aspects. Since monkeys of both genera evolved independently over a long period of time facing different environmental pressures, the similarities in the architectonic maps of PfC in both genera are issues of interest. However, additional data about the connectivity and function of the Cebus PfC are necessary to evaluate the possibility of potential homologies or parallelisms.


Assuntos
Mapeamento Encefálico/métodos , Cebus/anatomia & histologia , Fibras Nervosas Mielinizadas/química , Córtex Pré-Frontal/química , Córtex Pré-Frontal/citologia , Animais , Cebus/fisiologia , Masculino , Fibras Nervosas Mielinizadas/fisiologia , Córtex Pré-Frontal/fisiologia , Especificidade da Espécie
6.
Brain Res ; 1302: 85-96, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19769951

RESUMO

In order to investigate a putative role for nitric oxide (NO) in the central nociceptive processing following carrageenan-induced arthritis in the rat temporomandibular joint (TMJ), we analyzed the immunoreactivity, gene expression and activity of nitric oxide synthases (NOS) in the caudal part of the spinal trigeminal nucleus (Sp5C) during the acute (24 h), chronic (15 days) and chronic-active (14 days-24 h) arthritis. In addition, evaluation of head-withdrawal threshold was carried out in all phases of arthritis under chronic inhibition of nNOS with the selective inhibitor 7-nitroindazole (7-NI). Neurons with nNOS-like immunoreactivity (nNOS-LI) were concentrated mainly in the lamina II of the Sp5C, showing no significant statistical difference during arthritis. Only a discrete percentage of nNOS-LI neurons expressed Fos immunoreactivity. The mRNA expression for both nNOS and endothelial nitric oxide synthases (eNOS) presented no noticeable differences among the groups. No expression of inducible nitric oxide synthase (iNOS) was detected in the Sp5C by either immunohistochemistry or reverse-transcription polymerase chain reaction (RT-PCR). Ca(2+)-dependent NOS activity in the ipsilateral Sp5C was significantly higher (108.3+/-49.2%; P<0.01) in animals during the chronic arthritis. Interestingly, this increased activity was completely abolished 24 h later, in the chronic-active arthritis. Finally, head-withdrawal threshold decreased significantly in the chronic arthritis in animals under 7-NI chronic inhibition. In conclusion, nNOS immunoreactivity and mRNA expression are stable in the Sp5C during TMJ arthritis evolution, but its activity significantly increases in the chronic-phases supporting an antinociceptive role of the nNOS as evidenced by pain threshold experiment.


Assuntos
Artralgia/metabolismo , Artrite Experimental/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Transtornos da Articulação Temporomandibular/metabolismo , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo , Animais , Artralgia/induzido quimicamente , Artralgia/fisiopatologia , Artrite Experimental/induzido quimicamente , Artrite Experimental/fisiopatologia , Carragenina/farmacologia , Doença Crônica , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , Mediadores da Inflamação/farmacologia , Masculino , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Nociceptores/metabolismo , Medição da Dor , Limiar da Dor/fisiologia , Células do Corno Posterior/metabolismo , Células do Corno Posterior/fisiopatologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transtornos da Articulação Temporomandibular/induzido quimicamente , Transtornos da Articulação Temporomandibular/fisiopatologia , Núcleo Inferior Caudal do Nervo Trigêmeo/fisiopatologia
7.
Brain Res ; 1083(1): 118-33, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16530735

RESUMO

We studied the distribution of NADPH-diaphorase (NADPH-d) activity in the prefrontal cortex of normal adult Cebus apella monkeys using NADPH-d histochemical protocols. The following regions were studied: granular areas 46 and 12, dysgranular areas 9 and 13, and agranular areas 32 and Oap. NADPH-d-positive neurons were divided into two distinct types, both non-pyramidal. Type I neurons had a large soma diameter (17.24 +/- 1.73 microm) and were densely stained. More than 90% of these neurons were located in the subcortical white matter and infragranular layers. The remaining type I neurons were distributed in the supragranular layers. Type II neurons had a small, round or oval soma (9.83 +/- 1.03 microm), and their staining pattern varied markedly. Type II neurons were distributed throughout the cortex, with their greatest numerical density being observed in layers II and III. In granular areas, the number of type II neurons was up to 20 times that of type I neurons, but this proportion was smaller in agranular areas. Areal density of type II neurons was maximum in the supragranular layers of granular areas and minimum in agranular areas. Statistical analysis revealed that these areal differences were significant when comparing some specific areas. In conclusion, our results indicate a predominance of NADPH-d-positive cells in supragranular layers of granular areas in the Cebus prefrontal cortex. These findings support previous observations on the role of type II neurons as a new cortical nitric oxide source in supragranular cortical layers in primates, and their potential contribution to cortical neuronal activation in advanced mammals.


Assuntos
Cebus , NADPH Desidrogenase/biossíntese , Neurônios Nitrérgicos/citologia , Neurônios Nitrérgicos/enzimologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/enzimologia , Animais , Biomarcadores/metabolismo , Mapeamento Encefálico , Cebus/anatomia & histologia , Cebus/metabolismo , Contagem de Células/métodos , Forma Celular/fisiologia , Tamanho Celular , Dendritos/ultraestrutura , Histocitoquímica , Masculino
8.
J Comp Neurol ; 463(2): 157-75, 2003 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-12815753

RESUMO

The urocortin (UCN)-like immunoreactivity and UCN mRNA distribution in various regions of the nonprimate mammalian brain have been reported. However, the Edinger-Westphal nucleus (EW) appears to be the only brain site where UCN expression is conserved across species. Although UCN peptides are present throughout vertebrate phylogeny, the functional roles of both UCN and EW remain poorly understood. Therefore, a study focused on UCN system organization in the primate brain is warranted. By using immunohistochemistry (single and double labeling) and in situ hybridization, we have characterized the organization of UCN-expressing cells and fibers in the central nervous system and pituitary of the capuchin monkey (Cebus apella). In addition, the sequence of the prepro-UCN was determined to establish the level of structural conservation relative to the human sequence. To understand the relationship of acetylcholine cells in the EW, a colocalization study comparing choline acetyltransferase (ChAT) and UCN was also performed. The cloned monkey prepro-UCN is 95% identical to the human preprohormone across the matched sequences. By using an antiserum raised against rat UCN and a probe generated from human cDNA, we found that the EW is the dominant site for UCN expression, although UCN mRNA is also expressed in spinal cord lamina IX. Labeled axons and terminals were distributed diffusely throughout many brain regions and along the length of the spinal cord. Of particular interest were UCN-immunoreactive inputs to the medial preoptic area, the paraventricular nucleus of the hypothalamus, the oral part of the spinal trigeminal nucleus, the flocculus of the cerebellum, and the spinal cord laminae VII and X. We found no UCN hybridization signal in the pituitary. In addition, we observed no colocalization between ChAT and UCN in EW neurons. Our results support the hypothesis that the UCN system might participate in the control of autonomic, endocrine, and sensorimotor functions in primates.


Assuntos
Cebus/metabolismo , Sistema Nervoso Central/química , Hormônio Liberador da Corticotropina/análise , Hormônio Liberador da Corticotropina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cebus/genética , Imuno-Histoquímica , Hibridização In Situ , Masculino , Dados de Sequência Molecular , Vias Neurais/química , Urocortinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...