Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
MAbs ; 9(5): 781-791, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28440708

RESUMO

Monoclonal antibodies (mAbs) are a rapidly growing drug class for which great efforts have been made to optimize certain molecular features to achieve the desired pharmacokinetic (PK) properties. One approach is to engineer the interactions of the mAb with the neonatal Fc receptor (FcRn) by introducing specific amino acid sequence mutations, and to assess their effect on the PK profile with in vivo studies. Indeed, FcRn protects mAbs from intracellular degradation, thereby prolongs antibody circulation time in plasma and modulates its systemic clearance. To allow more efficient and focused mAb optimization, in vitro input that helps to identify and quantitatively predict the contribution of different processes driving non-target mediated mAb clearance in vivo and supporting translational PK modeling activities is essential. With this aim, we evaluated the applicability and in vivo-relevance of an in vitro cellular FcRn-mediated transcytosis assay to explain the PK behavior of 25 mAbs in rat or monkey. The assay was able to capture species-specific differences in IgG-FcRn interactions and overall correctly ranked Fc mutants according to their in vivo clearance. However, it could not explain the PK behavior of all tested IgGs, indicating that mAb disposition in vivo is a complex interplay of additional processes besides the FcRn interaction. Overall, the transcytosis assay was considered suitable to rank mAb candidates for their FcRn-mediated clearance component before extensive in vivo testing, and represents a first step toward a multi-factorial in vivo clearance prediction approach based on in vitro data.


Assuntos
Anticorpos Monoclonais Murinos/farmacocinética , Bioensaio/métodos , Antígenos de Histocompatibilidade Classe I/imunologia , Receptores Fc/imunologia , Transcitose/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Macaca fascicularis , Camundongos , Ratos , Ratos Wistar
2.
Drug Metab Dispos ; 42(9): 1466-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24989889

RESUMO

Although the multiplicity in transport proteins assessed during drug development is continuously increasing, the clinical relevance of the breast cancer resistance protein (BCRP) is still under debate. Here, our aim is to rationalize the need to consider BCRP substrate and inhibitor interactions and to define optimum selection and acceptance criteria between cell-based and vesicle-based assays in vitro. Information on the preclinical and clinical pharmacokinetics (PK), drug-drug interactions, and pharmacogenomics data was collated for 13 marketed drugs whose PK is reportedly associated with BCRP interaction. Clinical examples where BCRP impacts drug PK and efficacy appear to be rare and confounded by interactions with other transporters. Thirty-seven compounds were selected to be tested as BCRP substrates in a cell-based assay using MDCKII cells (Madin-Darby canine kidney cells) and 18 in membrane vesicles. Depending on the physicochemical compound properties, we observed both in vitro systems to give false-negative readouts. In addition, the inhibition potential of 19 compounds against BCRP was assessed in vesicles and in MDCKII cells, where we observed significant system and substrate-dependent IC50 values. Therefore, neither of the two test systems is superior to the other. Instead, one system may offer advantages under certain situations (e.g., low permeability) and thus should be selected based on the physicochemical compound properties. Finally, given the clinical relevance of BCRP, we propose that its evaluation should remain issue-driven: for low permeable, low bioavailable drugs, in particular when other more common processes do not allow a mechanistic understanding of any unexpected absorption or brain disposition, and for drugs with a low therapeutic window.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Preparações Farmacêuticas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Disponibilidade Biológica , Linhagem Celular , Cães , Descoberta de Drogas/métodos , Interações Medicamentosas/fisiologia , Humanos , Células LLC-PK1 , Células Madin Darby de Rim Canino , Proteínas de Membrana Transportadoras/metabolismo , Suínos
3.
Drug Metab Dispos ; 42(9): 1411-22, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24939652

RESUMO

The multidrug resistance protein 1 (MDR1) is known to limit brain penetration of drugs and play a key role in drug-drug interactions (DDIs). Theoretical cut-offs from regulatory guidelines are used to extrapolate MDR1 interactions from in vitro to in vivo. However, these cut-offs do not account for interlaboratory variability. Our aim was to calibrate our experimental system to allow better in vivo predictions. We selected 166 central nervous system (CNS) and non-CNS drugs to calibrate the MDR1 transport screening assay using Lewis lung cancer porcine kidney 1 epithelial cells overexpressing MDR1 (L-MDR1). A threshold efflux ratio (ER) of 2 was established as one parameter to assess brain penetration in lead optimization. The inhibitory potential of 57 molecules was evaluated using IC50 values based on the digoxin ER-IC50(ER)-or apparent permeability-IC50(Papp)-in L-MDR1 cells. Published clinical data for 68 DDIs involving digoxin as the victim drug were collected. DDI risk assessments were based on intestinal concentrations ([I2]) as well as unbound [I1u] and total plasma [I1T] concentrations. A receiver operating characteristic analysis identified an [I2]/IC50(ER) of 6.5 as the best predictor of a potential interaction with digoxin in patients. The model was further evaluated with a test set of 11 digoxin DDIs and 16 nondigoxin DDIs, resulting in only one false negative for each test set, no false positives among the digoxin DDIs, and two among the nondigoxin DDIs. Future refinements might include using cerebrospinal fluid to unbound plasma concentration ratios rather than therapeutic class, better estimation of [I2], and dynamic modeling of MDR1-mediated DDIs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Interações Medicamentosas/fisiologia , Preparações Farmacêuticas/metabolismo , Animais , Bioensaio/métodos , Transporte Biológico/fisiologia , Calibragem , Linhagem Celular Tumoral , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Digoxina/metabolismo , Humanos , Técnicas In Vitro/métodos , Permeabilidade , Suínos
4.
J Pharmacokinet Pharmacodyn ; 36(6): 585-611, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19936896

RESUMO

The aim of this study was to evaluate a strategy based on a physiologically based pharmacokinetic (PBPK) model for the prediction of PK profiles in human using in vitro data when elimination of compounds relies on active transport processes. The strategy was first applied to rat in vivo and in vitro data in order to refine the PBPK model. The model could then be applied to human in vitro uptake transport data using valsartan as a probe substrate. Plated rat and human hepatocytes, and cell lines overexpressing human OATP1B1 and OATP1B3 were used for in vitro uptake experiments. The uptake rate of valsartan was higher for rat hepatocytes (K (m,u) = 28.4 +/- 3.7 muM, V (max) = 1318 +/- 176 pmol/mg/min and P (dif) = 1.21 +/- 0.42 microl/mg/min) compared to human hepatocytes (K (m,u) = 44.4 +/- 14.6 microM, V (max) = 304 +/- 85 pmol/mg/min and P (dif) = 0.724 +/- 0.271 microl/mg/min). OATP1B1 and 1B3 parameters were correlated to human hepatocyte data using experimentally established relative activity factors (RAF). Resulting PBPK simulations using those in vitro data were compared for plasma (human and rat) and bile (rat) concentration-time profiles following i.v. bolus administration of valsartan. An uncertainty analysis indicated that the scaled in vitro uptake clearance had to be adjusted with an additional empirical scaling factor of 5 to match the plasma concentrations and biliary excretion profiles. Applying this model, plasma clearances (CL(P)) for rat and human were predicted within two-fold relative to predictions based on respective in vitro data. The corrected hepatic uptake transport kinetic parameters enabled the prediction of valsartan in vivo PK profiles and plasma clearances, using PBPK modeling. Moreover, the interspecies difference in elimination rate observed in vivo was correctly reflected in the transport parameters determined in vitro. More data are needed to support more general applications of the proposed approach including its use for metabolized compounds.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacocinética , Hepatócitos/metabolismo , Modelos Biológicos , Transportadores de Ânions Orgânicos/metabolismo , Tetrazóis/farmacocinética , Valina/análogos & derivados , Administração Oral , Adulto , Idoso , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/sangue , Animais , Bile/metabolismo , Transporte Biológico Ativo , Células CHO , Cricetinae , Cricetulus , Estudos Cross-Over , Interações Medicamentosas , Feminino , Humanos , Injeções Intravenosas , Transportador 1 de Ânion Orgânico Específico do Fígado , Masculino , Pessoa de Meia-Idade , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Reprodutibilidade dos Testes , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Especificidade da Espécie , Tetrazóis/administração & dosagem , Tetrazóis/sangue , Transfecção , Valina/administração & dosagem , Valina/sangue , Valina/farmacocinética , Valsartana
5.
Chem Biodivers ; 6(11): 1975-87, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19937834

RESUMO

The aim of this study was to evaluate a physiologically based pharmacokinetic (PBPK) model for predicting PK profiles in humans based on a model refined in rats and humans in vitro uptake-transport data using valsartan as a probe substrate. Valsartan is eliminated unchanged, mostly through biliary excretion, both in humans and rats. It was, therefore, chosen as model compound to predict in vivo elimination based on in vitro hepatic uptake-transport data using a fully mechanistic PBPK model. Plated rat and human hepatocytes, and cell lines overexpressing human OATP1B1 and OATP1B3 were used for in vitro uptake experiments. A mechanistic two-compartment model was used to derive the active and passive transport parameters, namely uptake Michaelis-Menten parameters (V(max) and K(m,u)) together with passive diffusion (P(dif)). These transport parameters were then used as input in a whole body physiologically based pharmacokinetic (PBPK) model. The uptake rate of valsartan was higher for rat hepatocytes (K(m,u)=28.4+/-3.7 microM, V(max)=1320+/-180 pmol/mg/min, and P(dif) =1.21+/-0.42 microl/mg/min) compared to human hepatocytes (K(m,u)=44.4+/-14.6 microM, V(max)=304+/-85 pmol/mg/min, and P(dif)=0.724+/-0.271 microl/mg/min). OATP1B1 and -1B3 parameters were correlated to human hepatocyte data, using experimentally established relative activity factors (RAF). Resulting PBPK simulations were compared for plasma- (humans and rats) and bile- (rats) concentration-time profiles following iv bolus administration of valsartan. Plasma clearances (CL(P)) for rats and humans were predicted within twofold relative to predictions based on respective in vitro data. The simulations were extended to simulate the impact of either OATP1B1 or -1B3 inhibition on plasma profile. The limited data set indicates that the mechanistic model allowed for accurate evaluation of in vitro transport data; and the resulting hepatic uptake transport kinetic parameters enabled the prediction of in vivo PK profiles and plasma clearances, using PBPK modelling. Moreover, the interspecies difference in elimination rate observed in vivo was correctly reflected in the transport parameters determined in vitro.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacocinética , Tetrazóis/farmacocinética , Valina/análogos & derivados , Algoritmos , Animais , Bile/metabolismo , Transporte Biológico Ativo/fisiologia , Linhagem Celular , Simulação por Computador , Interpretação Estatística de Dados , Previsões , Hepatócitos/metabolismo , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado , Modelos Biológicos , Tamanho do Órgão/fisiologia , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Ratos , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Distribuição Tecidual , Transfecção , Valina/farmacocinética , Valsartana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...