Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(8): 3724-3734, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38359353

RESUMO

Silver thiolate nanoclusters (Ag NCs) show distinctive optical properties resulting from their hybrid nature, metallic and molecular, exhibiting size-, structure-, and surface-dependent photoluminescence, thus enabling the exploitation of Ag NCs for potential applications in nanobiotechnology, catalysis, and biomedicine. However, tailoring Ag NCs for specific applications requires achieving long-term stability and may involve modifying surface chemistry, fine-tuning ligand composition, or adding functional groups. In this study, we report the synthesis of novel Ag NCs using 2-ethanephenylthiolate (SR) as a ligand, highlight critical points addressing stability, and characterize their optical and structural properties. A preliminary electrical characterization revealed high anisotropy, well suited for potential use in electronics/sensing applications. We also present the synthesis and characterization of Ag NCs using 10-carboxylic 2-ol thiolate (SR'COOH) having a terminal carboxylic group for conjugation with amine-containing molecules. We present a preliminary assessment of its bioconjugation capability using bovine serum albumin as a model protein indicating its prospective application as a biomolecule support.


Assuntos
Prata , Prata/química , Ligantes
2.
Materials (Basel) ; 16(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687519

RESUMO

This work focuses on the possible application of gold nanoparticles on flexible cotton fabric as acetone- and ethanol-sensitive substrates by means of impedance measurements. Specifically, citrate- and polyvinylpyrrolidone (PVP)-functionalized gold nanoparticles (Au NPs) were synthesized using green and well-established procedures and deposited on cotton fabric. A complete structural and morphological characterization was conducted using UV-VIS and Fourier transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM). A detailed dielectric characterization of the blank substrate revealed interfacial polarization effects related to both Au NPs and their specific surface functionalization. For instance, by entirely coating the cotton fabric (i.e., by creating a more insulating matrix), PVP was found to increase the sample resistance, i.e., to decrease the electrical interconnection of Au NPs with respect to citrate functionalized sample. However, it was observed that citrate functionalization provided a uniform distribution of Au NPs, which reduced their spacing and, therefore, facilitated electron transport. Regarding the detection of volatile organic compounds (VOCs), electrochemical impedance spectroscopy (EIS) measurements showed that hydrogen bonding and the resulting proton migration impedance are instrumental in distinguishing ethanol and acetone. Such findings can pave the way for the development of VOC sensors integrated into personal protective equipment and wearable telemedicine devices. This approach may be crucial for early disease diagnosis based on nanomaterials to attain low-cost/low-end and easy-to-use detectors of breath volatiles as disease markers.

3.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982691

RESUMO

Widely used in biomedical and bioanalytical applications, the detonation nanodiamonds (NDs) are generally considered to be biocompatible and non-toxic to a wide range of eukaryotic cells. Due to their high susceptibility to chemical modifications, surface functionalisation is often used to tune the biocompatibility and antioxidant activity of the NDs. The response of photosynthetic microorganisms to redox-active NDs is still poorly understood and is the focus of the present study. The green microalga Chlamydomonas reinhardtii was used to assess the potential phytotoxicity and antioxidant activity of NDs hosting hydroxyl functional groups at concentrations of 5-80 µg NDs/mL. The photosynthetic capacity of microalgae was assessed by measuring the maximum quantum yield of PSII photochemistry and the light-saturated oxygen evolution rate, while oxidative stress was assessed by lipid peroxidation and ferric-reducing antioxidant capacity. We demonstrated that hydroxylated NDs might reduce cellular levels of oxidative stress, protect PSII photochemistry and facilitate the PSII repair under methyl viologen and high light associated stress conditions. Factors involved in this protection may include the low phytotoxicity of hydroxylated NDs in microalgae and their ability to accumulate in cells and scavenge reactive oxygen species. Our findings could pave the way for using hydroxylated NDs as antioxidants to improve cellular stability in algae-based biotechnological applications or semi-artificial photosynthetic systems.


Assuntos
Chlamydomonas reinhardtii , Nanodiamantes , Chlamydomonas reinhardtii/metabolismo , Paraquat/toxicidade , Antioxidantes/farmacologia , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese , Estresse Oxidativo , Luz
4.
Nanoscale Adv ; 5(3): 627-632, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756516

RESUMO

Silver thiolate nanoclusters have been functionalized with a chiral amino alcohol ligand that has previously shown high catalytic efficiency in different asymmetric reactions. The as-developed nanostructured catalyst, which can be easily recovered by simple centrifugation, has been tested in the addition of nitromethane to aromatic aldehydes, showing the same catalytic activity as the homogeneous ligand. Moreover, it was reused for two further recycling cycles without loss of efficiency. To the best of our knowledge, this is the first example of silver nanoclusters employed as a support for chiral ligands for heterogeneous phase asymmetric catalysis.

5.
Int J Biol Macromol ; 231: 123270, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36657542

RESUMO

In the current work, we present a renewable alternative coating formulation made of durable titania nanoparticles and oxidized nanocellulose (TiO2NPs@OCNs) nanocomposites and sodium alginate (SA), to create an environmentally friendly and secure food packaging paper. OCNs sugarcane fibers are firstly hydrolyzed using ammonium persulphate (APS). Then, TiO2NPs@OCNs nanocomposites are made in situ with OCNs using a green water-based sol-gel synthesis. Gram (+) microorganisms as well as Gram (-) bacteria are used to test the antibacterial properties of the TiO2NPs@OCN dispersions. The results show that the TiO2NP@OCNs significantly decreases the growth for all bacterial species. The TiO2NP@OCNs nanocomposites are mixed with SA, and the resulting formulations are used to coat paper sheets. The corresponding physicochemical properties are evaluated using FTIR, TGA, AFM, SEM, and EDX. Furthermore, the mechanical strength, air permeability, and water vapor characteristics of the paper sheets treated with SA/TiO2NPs@OCN are carried out, resulting in a great improvement of these properties. Finally, the SA/TiO2NPs@OCNs coated papers have been used as packaging for strawberries. The findings demonstrate that coated papers could preserve strawberry quality better than unpacked fruit and extend strawberry shelf life from 6 to 18 days.


Assuntos
Celulose Oxidada , Nanocompostos , Nanopartículas , Antibacterianos/química , Nanopartículas/química , Nanocompostos/química , Embalagem de Alimentos , Alginatos/química
6.
Materials (Basel) ; 15(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500046

RESUMO

Hydrophobic and oleophilic Si-based cotton fabrics have recently gained a lot of attention in oil/water separation due to their high efficiency. In this study, we present the effect of O2 plasma pre-treatment on the final properties of two Si-based cotton membranes obtained from dip coating and plasma polymerization, using polydimethylsiloxane (PDMS) as starting polymeric precursor. The structural characterizations indicate the presence of Si bond on both the modified cotton surfaces, with an increase of the carbon bond, assuring the success in surface modification. On the other hand, employing O2 plasma strongly changes the cotton morphology, inducing specific roughness and affecting the hydrophobicity durability and separation efficiency. In particular, the wettability has been retained after 20 laundry tests at 40 °C and 80 °C, and, for separation efficiency, even after 30 cycles, an improvement in the range of 10-15%, both at room temperature and at 90 °C can be observed. These results clearly demonstrate that O2 plasma pre-treatment, an eco-friendly, non-toxic, solvent-free, and one-step method for inducing specific functionalities on surfaces, is very effective in enhancing the oil/water separation properties for Si-based cotton membranes, especially in combination with plasma polymerization procedure for Si-based deposition.

7.
Materials (Basel) ; 15(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36013927

RESUMO

The combination of cellulosic materials and metal oxide semiconductors can provide composites with superior functional properties compared to cellulose. By using nanocellulose derived from agricultural waste, we propose a one-pot and environmentally friendly approach to the synthesis of nanocellulose-TiO2 (NC-TiO2) nanocomposites with peculiar photocatalytic activity and antibacterial effects. The as-prepared NC-TiO2 composites were fully characterized by different techniques, such as X-ray diffraction (XRD), µ-Raman, Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The results showed that well crystalline anatase TiO2 nanoparticles of about 5-6 nm were obtained. The photocatalytic activity in particular was evaluated by using methyl orange (MO) solution as a target pollutant at different pH values. It was found that all the tested NC-TiO2 nanocomposites showed stable photocatalytic activity, even after consecutive photocatalytic runs. In addition, NCT nanocomposites with higher TiO2 content showed degradation efficiency of almost 99% towards MO after 180 min of UV illumination. Finally, NC-TiO2 nanocomposites also showed intriguing antimicrobial properties, demonstrating to be effective against Gram-positive (Staphylococcus aureus, Bacillus subtilis) with 20-25 mm of inhibition zone and Gram-negative bacteria (Escherichia coli, Pseudomonas aeuroginosa) with 21-24 mm of inhibition zone, and fungi (Candida albicans) with 9-10 mm of inhibition zone.

8.
Nanomaterials (Basel) ; 11(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34947625

RESUMO

The impact of extra-low dosage (0.01% by weight of cement) Graphene Oxide (GO) on the properties of fresh and hardened nanocomposites was assessed. The use of a minimum amount of 2-D nanofiller would minimize costs and sustainability issues, therefore encouraging the market uptake of nanoengineered cement-based materials. GO was characterized by X-ray Photoelectron Spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), and Raman spectroscopy. GO consisted of stacked sheets up to 600 nm × 800 nm wide and 2 nm thick, oxygen content 31 at%. The impact of GO on the fresh admixtures was evaluated by rheology, flowability, and workability measurements. GO-modified samples were characterized by density measurements, Scanning Electron Microscopy (SEM) analysis, and compression and bending tests. Permeability was investigated using the boiling-water saturation technique, salt ponding test, and Initial Surface Absorption Test (ISAT). At 28 days, GO-nanocomposite exhibited increased density (+14%), improved compressive and flexural strength (+29% and +13%, respectively), and decreased permeability compared to the control sample. The strengthening effect dominated over the adverse effects associated with the worsening of the fresh properties; reduced permeability was mainly attributed to the refining of the pore network induced by the presence of GO.

9.
Materials (Basel) ; 14(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34361390

RESUMO

Materials possessing long-term antibacterial behavior and high cytotoxicity are of extreme interest in several applications, from biomedical devices to food packaging. Furthermore, for the safeguard of the human health and the environment, it is also stringent keeping in mind the need to gather good functional performances with the development of ecofriendly materials and processes. In this study, we propose a green fabrication method for the synthesis of silver nanoparticles supported on oxidized nanocellulose (ONCs), acting as both template and reducing agent. The complete structural and morphological characterization shows that well-dispersed and crystalline Ag nanoparticles of about 10-20 nm were obtained in the cellulose matrix. The antibacterial properties of Ag-nanocomposites (Ag-ONCs) were evaluated through specific Agar diffusion tests against E. coli bacteria, and the results clearly demonstrate that Ag-ONCs possess high long-lasting antibacterial behavior, retained up to 85% growth bacteria inhibition, even after 30 days of incubation. Finally, cell viability assays reveal that Ag-ONCs show a significant cytotoxicity in mouse embryonic fibroblasts.

10.
Int J Biol Macromol ; 181: 612-620, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33798578

RESUMO

Packaging is as important as the product itself because it is a crucial marketing and communication tool for business. Oxidized nanocellulose (ONC), extracted from agriculture residues of bagasse raw material using ecofriendly ammonium persulfate hydrolysis method, is used as support/reducing agent for the generation of silver nanoparticles (AgNPs) via photochemical procedure and reinforcing element in paper functionalization. The natural polymer, sodium alginate (SA) is exploited to enhance the binding of the ONC-AgNPs over cellulose fibers. The SA/ONC-AgNPs bio-nanocomposite is incorporated on paper matrix, which represents a more suitable choice respect to other substrates for its renewable, biocompatible, biodegradable, and cost-effective properties. Structural and antimicrobial evaluations show that the papers embedded with the SA/ONC-AgNPs possess good mechanical, thermal, barrier and antibacterial properties.


Assuntos
Alginatos/química , Celulose/química , Embalagem de Alimentos , Nanopartículas Metálicas/química , Nanocompostos/química , Papel , Prata/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Termogravimetria , Difração de Raios X
11.
J Nanosci Nanotechnol ; 21(5): 2816-2823, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653446

RESUMO

Noble metal thiolate nanoclusters are a new class of nanomaterials with molecular-like properties such as high dispersibility and fluorescence in the visible and infrared spectral region, properties highly requested in biomedicine for imaging, sensing and drug delivery applications. We report on three new silver phenylethane thiolate nanoclusters, differing for slight modifications of the preparation, i.e., the reaction solvent and the thiolate quantity, producing changes in the nanocluster composition as well as in the fluorescence behavior. All samples, excited in the range 250-500 nm, emit around 400 and 700 nm differing in the emission maxima and behavior. The silver thiolate nanoclusters have been characterized by way of C, H, S elemental analyses and Thermal Gravimetric Analysis (TGA) to determine the nanocluster composition, Scanning Transmission Electron Microscopy (STEM) to investigate the nanocluster morphology and UV-Vis and fluorescence spectroscopy to study their optical properties.

12.
Nanoscale Adv ; 3(10): 2948-2960, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-36134198

RESUMO

Fluorescent atomically precise Ag38(11-azido-2-ol-undecane-thiolate)24 nanoclusters are easily prepared using sodium ascorbate as a "green" reducer and are extensively characterized by way of elemental analyses, ATR-FTIR, XRD, SAXS, UV-vis, fluorescence spectroscopies, and theoretical modeling. The fluorescence and the atomically determined stoichiometry and structure, the facile and environmentally green synthesis, together with the novel presence of terminal azido groups in the ligands which opens the way to "click"-binding a wide set of molecular species, make Ag38(11-azido-2-ol-undecane-thiolate)24 nanoclusters uniquely appealing systems for biosensing, recognition and functionalization in biomedicine applications and in catalysis.

13.
Chempluschem ; 85(11): 2376-2386, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32406580

RESUMO

The [1]benzothieno[3,2-b][1]benzothiophene (BTBT) planar system was used to functionalize the phthalocyanine ring aiming at synthesizing novel electron-rich π-conjugated macrocycles. The resulting ZnPc-BTBT and ZnPc-(BTBT)4 derivatives are the first two examples of a phthalocyanine subclass having potential use as solution-processable p-type organic semiconductors. In particular, the combination of experimental characterizations and theoretical calculations suggests compatible energy level alignments with mixed halide hybrid perovskite-based devices. Furthermore, ZnPc-(BTBT)4 features a high aggregation tendency, a useful tool to design compact molecular films. When tested as hole transport materials in perovskite solar cells under 100 mA cm-2 standard AM 1.5G solar illumination, ZnPc-(BTBT)4 gave power conversion efficiencies as high as 14.13 %, irrespective of the doping process generally required to achieve high photovoltaic performances. This work is a first step toward a new phthalocyanine core engineerization to obtain robust, yet more efficient and cost-effective materials for organic electronics and optoelectronics.

14.
Materials (Basel) ; 13(6)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183330

RESUMO

Different amounts of a stable aqueous TiO2 hydrosol were used to fabricate paper sheets having photocatalytic activity. The TiO2 hydrosol was prepared in aqueous medium using titanium butoxide as precursor and acetic acid as catalyst for the hydrolysis of titanium butoxide. An aging process at room temperature and atmospheric pressure was finally applied to obtain crystalline anatase TiO2 hydrosol. The effects of different TiO2 hydrosol loadings on the mechanical strength and barrier properties of modified paper sheets were investigated in detail. The photocatalytic behavior of TiO2-modified paper sheets was investigated as well using methylene blue (MB) as target pollutant.

15.
Nanoscale ; 10(16): 7472-7483, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29637951

RESUMO

We show that using the same reaction procedure, by hindering or allowing the formation of a reaction intermediate, the Ag+dodecanethiolate polymeric complex, it is possible to selectively obtain Ag dodecanethiolate nanoparticles or Ag dodecanethiolate nanoclusters in the size range 4-2 nm. Moreover, the Ag dodecanethiolate nanoclusters display a lamellar superstructure templated from the precursor Ag+dodecanethiolate polymeric complex. A plausible formation mechanism is illustrated where, starting from the precursor and scaffold lamellar Ag+ thiolate polymeric complex, first the nanocluster Agn0 core is formed by reduction of isoplanar Ag+ ions, followed by Ag+ thiolate units that build protection, the nanocluster shell, around the core. The nanoclusters are characterized by elemental analyses, XRD, ATR-FTIR, XPS, XAS, MALDI, ESI, UV-Vis and fluorescence measurements. The luminescent Ag15(dodecanethiolate)11·2H2O nanocluster is achieved in good yield after 4 hours of reaction whereas after 2 hours, the luminescent Ag35(dodecanethiolate)16 is isolated. Both Ag nanoclusters present emission bands in the range 330-450 nm, the shifting depending on the excitation wavelength. This phenomenon is attributed to a possible dipolar state causing distribution in energies due to variability of dipole-dipole interactions. Moreover, both nanoclusters further present a NIR emission at about 700 nm independent from the excitation wavelength. Thanks to their optical and structural properties, the synthesized nanoclusters, perfect molecular/nanoparticle hybrids, have great potentiality for new applications in nanotechnologies.

16.
J Colloid Interface Sci ; 446: 44-52, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25656558

RESUMO

Unconventional nanopatterning methods are emerging as powerful tools for the development of controlled shapes and ordered morphology of nanostructured materials with novel properties and tailorable functions. Here, we report a simple yet straightforward and efficient approach for patterning through unconventional dewetting that involves surface tension driven process. Using this innovative approach, we have successfully demonstrated to be able to prepare surface micro-patterns over large areas deposited through Eu(3+):TiO2 nanoparticles providing rational control over the local nucleation of nanoparticles. Remarkably, these features could be addressed by polar or apolar solvents, suggesting potential applications in bottom-up nanodevices. This paper represents the first such attempt to create an inorganic materials non-lithographic template for the directed deposition of Eu(3+):TiO2 or related metal oxides. The technique, which is driven by the unique chemical properties and geometrical layout of the underlying patterned micrometer-sized templates, enables the construction of micro- and nano-structuration of dispersed inorganic functional materials suitable for electrooptical and photonic applications.


Assuntos
Európio/química , Nanoestruturas/química , Nanotecnologia/métodos , Solventes/química , Titânio/química , Propriedades de Superfície , Tensão Superficial
17.
Langmuir ; 29(8): 2775-83, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23379650

RESUMO

A stable and improved control of the wettability of textiles was obtained by using a coating of diamond like carbon (DLC) films on cotton by PECVD. By controlling different plasma pretreatments of argon, oxygen, and hydrogen on the cotton fibers' surface, we have shown that the pretreatments had a significant impact on wettability behavior resulting from an induced nanoscale roughness combined with an incorporation of selected functional groups. Upon subsequent deposition of diamond like carbon (DLC) films, the cotton fibers yield to a highly controlled chemical stability and hydrophobic state and could be used for self-cleaning applications. By controlling the nature of the plasma pretreatment we have shown that the oxygen plasma pretreatment was more effective than the argon and hydrogen for the superhydrophilic/ultra hydrophobic properties. The chemical and morphological changes of the cotton fibers under different treatments were characterized using X-ray photoelectron and Raman spectroscopy, AFM, and water contact angle measurements. The mechanism underlying the water-repellent properties of the cotton fibers provides a new and innovative pathway into the development of a range of advanced self-cleaning textiles.


Assuntos
Carbono/química , Fibra de Algodão , Argônio/química , Hidrogênio/química , Interações Hidrofóbicas e Hidrofílicas , Oxigênio/química , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
18.
Inorg Chem ; 41(4): 709-14, 2002 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-11849070

RESUMO

The crystal and molecular structure of the layered weak-ferromagnet Fe[CH(3)PO(3)] x H(2)O has been solved by X-ray single-crystal diffraction techniques. Crystal data for Fe[CH(3)PO(3)] x H(2)O are the following: orthorhombic space group Pna2(1); a =17.538(2), b = 4.814(1), c = 5.719(1) A. The structure is lamellar, and it consists of alternating organic and inorganic layers along the a direction of the unit cell. The inorganic layers are made of Fe(II) ions octahedrally coordinated by five phosphonate oxygen atoms and one from oxygen of the water molecule. Each phosphonate group coordinates four metal ions, through chelation and bridging, making in this way a cross-linked Fe-O network. The resultant layers are then separated by bilayers of the methyl groups, with van der Waals contacts between them. The compound is air stable, and it dehydrates under inert atmosphere at temperatures above 120 degrees C. The oxidation state of the metal ion is +2, and the electronic configuration is d(6)( )()high spin (S = 2), as determined from dc magnetic susceptibility measurements from 150 K to ambient temperature. Below 100 K, the magnetic moment of Fe[CH(3)PO(3)] x H(2)O rises rapidly to a maximum at T(max) approximately equal to 24 K, and then it decreases again. The onset of peak at T = 25 K is associated with the 3D antiferromagnetic long-range ordering, T(N). The observed critical temperature, T(N), is like all the other previously reported Fe(II) phosphonates, and it appears to be nearly independent of the interlayer spacing in this family of hybrid organic-inorganic layered compounds. Below T(N), the compound behaves as a "weak ferromagnet", and represents the third kind of magnetic materials with a spontaneous magnetization below a finite critical temperature, ferromagnets and ferrimagnets being the other two types.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...