Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 119(4): 043902, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-29341774

RESUMO

We present experimental evidence for the different mechanisms driving the fluctuations of the local density of states (LDOS) in disordered photonic systems. We establish a clear link between the microscopic structure of the material and the frequency correlation function of LDOS accessed by a near-field hyperspectral imaging technique. We show, in particular, that short- and long-range frequency correlations of LDOS are controlled by different physical processes (multiple or single scattering processes, respectively) that can be-to some extent-manipulated independently. We also demonstrate that the single scattering contribution to LDOS fluctuations is sensitive to subwavelength features of the material and, in particular, to the correlation length of its dielectric function. Our work paves a way towards complete control of statistical properties of disordered photonic systems, allowing for designing materials with predefined correlations of LDOS.

2.
Science ; 338(6112): 1317-21, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23224550

RESUMO

As materials functionality becomes more dependent on local physical and electronic properties, the importance of optically probing matter with true nanoscale spatial resolution has increased. In this work, we mapped the influence of local trap states within individual nanowires on carrier recombination with deeply subwavelength resolution. This is achieved using multidimensional nanospectroscopic imaging based on a nano-optical device. Placed at the end of a scan probe, the device delivers optimal near-field properties, including highly efficient far-field to near-field coupling, ultralarge field enhancement, nearly background-free imaging, independence from sample requirements, and broadband operation. We performed ~40-nanometer-resolution hyperspectral imaging of indium phosphide nanowires via excitation and collection through the probes, revealing optoelectronic structure along individual nanowires that is not accessible with other methods.

3.
Phys Rev Lett ; 106(14): 143901, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21561191

RESUMO

A revisited realization of the Young's double slit experiment is introduced to directly probe the photonic mode symmetry by photoluminescence experiments. We experimentally measure the far field angular emission pattern of quantum dots embedded in photonic molecules. The experimental data well agree with predictions from Young's interference and numerical simulations. Moreover, the vectorial nature of photonic eigenmodes results in a rather complicated parity property for different polarizations, a feature which has no counterpart in quantum mechanics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...