Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555741

RESUMO

This work aims to improve the corrosion protection features of poly(phenylene methylene) (PPM) by sidechain engineering inserting methoxy units along the polymer backbone. The influence of side methoxy groups at different concentrations (4.6% mol/mol and 9% mol/mol) on the final polymer properties was investigated by structural and thermal characterization of the resulting copolymers: co-PPM 4.6% and co-PPM 9%, respectively. Then, coatings were processed by hot pressing the polymers powder on aluminum alloy AA2024 and corrosion protection properties were evaluated exposing samples to a 3.5% w/v NaCl aqueous solution. Anodic polarization tests evidenced the enhanced corrosion protection ability (i.e., lower current density) by increasing the percentage of the co-monomer. Coatings made with co-PPM 9% showed the best protection performance with respect to both PPM blend and PPM co-polymers reported so far. Electrochemical response of aluminum alloy coated with co-PPM 9% was monitored over time under two "artificially-aged" conditions, that are: (i) a pristine coating subjected to potentiostatic anodic polarization cycles, and (ii) an artificially damaged coating at resting condition. The first scenario points to accelerating the corrosion process, the second one models damage of the coating potentially occurring either due to natural deterioration or due to any accidental scratching of the polymer layer. In both cases, an intrinsic self-healing phenomenon was indirectly argued by the time evolution of the impedance and of the current density of the coated systems. The degree of restoring to the "factory conditions" by co-polymer coatings after self-healing events is eventually discussed.


Assuntos
Alumínio , Materiais Revestidos Biocompatíveis , Corrosão , Materiais Revestidos Biocompatíveis/química , Ligas/química , Polímeros
2.
Polymers (Basel) ; 14(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080534

RESUMO

Poly(phenylene methylene) (PPM) is a multifunctional polymer featuring hydrophobicity, high thermal stability, fluorescence and thermoplastic processability. Accordingly, smart corrosion resistant PPM-based coatings (blend and copolymer) were prepared and applied by hot pressing on aluminum alloy AA2024. The corrosion protection properties of the coatings and their dependence on coating thickness were evaluated for both strategies employed. The accelerated cyclic electrochemical technique (ACET), based on a combination of electrochemical impedance spectroscopy (EIS), cathodic polarizations and relaxation steps, was used as the main investigating technique. At the coating thickness of about 50 µm, both blend and copolymer PPM showed effective corrosion protection, as reflected by |Z|0.01Hz of about 108 Ω cm2 over all the ACET cycles. In contrast, when the coating thickness was reduced to 30 µm, PPM copolymer showed neatly better corrosion resistance than blended PPM, maintaining |Z|0.01Hz above 108 Ω cm2 with respect to values below 106 Ω cm2 of the latter. Furthermore, the analysis of many electrochemical key features, in combination with the optical investigation of the coating surface under 254 nm UV light, confirms the intrinsic self-healing ability of the coatings made by PPM copolymer, contrary to the reference specimen (i.e., blend PPM).

3.
ACS Appl Mater Interfaces ; 8(49): 33943-33954, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960366

RESUMO

One of the most challenging aspects of using nanofibrillated cellulose (NFC) for membranes production is their limited permeance. When NFC membranes are produced from aqueous suspensions, depending on their grammage, the permeances are in the range of a few decades of L/(hm2MPa) not matching satisfactory filtration times. We present a fast and sustainable solution to increase the permeances of such membranes through a combination of solvent exchange of the NFC suspension with ethanol and the use of a removable template, a mixture of calcium compounds (CC). The effect of the CC/NFC ratio was screened for various concentrations. The permeance of water could be increased by as much as 2-3 times as compared to nontemplated membranes. Further, the membranes showed the ability for penetration of water-soluble macromolecules, contaminant rejection of suspended solid particles, and thus fluids (such as orange juice) could be concentrated, with a view to applications in food industry.

4.
Faraday Discuss ; 191: 325-349, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27412349

RESUMO

This work revisits the synthesis of the colloidal particles most commonly used for making model near hard suspensions or as building blocks of model colloidal gels, i.e. sterically stabilised poly(methyl methacrylate) (PMMA) particles. The synthesis of these particles is notoriously hard to control and generally the problems are ascribed to the difficulty in synthesising the graft stabiliser (PMMA-g-PHSA). In the present work, it is shown that for improving the reliability of the synthesis as a whole, control over the polycondensation of the 12-polyhydroxystearic acid is the key. By changing the catalyst and performing the polycondensation in the melt, the chain length of the 12-polyhydroxystearic acid is better controlled, as confirmed by 1H-NMR spectroscopy. Control over the graft copolymer now enables us to make small variations of near hard sphere colloids, for example spherical PMMA particles with essentially the same core size and different stabilising layer thicknesses can now be readily produced, imparting controlled particle softness. The PMMA spheres can be further employed to create, in gram scale quantities, colloidal building blocks having geometrical and/or chemical anisotropy by using a range of mechanical deformation methods. The versatility of the latter methods is demonstrated for polystyrene latex particles as well.

5.
ACS Appl Mater Interfaces ; 7(46): 25884-97, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26516781

RESUMO

Nanofibrillated cellulose (NFC) is a natural fibrous material that can be readily processed into membranes. NFC membranes for fluid separation work in aqueous medium, thus in their swollen state. The present study is devoted to a critical investigation of porosity, pore volume, specific surface area, and pore size distribution of dry and wet NFC nanopapers, also known as membranes, with various established techniques, such as electron microscopy, helium pycnometry, mercury intrusion, gas adsorption (N2 and Kr), and thermoporometry. Although these techniques can be successfully applied to inorganic materials (e.g., mesoporous silica), it is necessary to appraise them for organic and hydrophilic products such as NFC membranes. This is due to different phenomena occurring at the materials interfaces with the probing fluids. Mercury intrusion and gas adsorption are often used for the characterization of porosity-related properties; nevertheless, both techniques characterize materials in the dry state. In parallel, thermoporometry was employed to monitor the structure changes upon swelling, and a water permeance test was run to show the accessibility of the membranes to fluids. For the first time, the methods were systematically screened, and we highlighted the need of uniform sample treatments prior to the measurements (i.e., sample cutting and outgassing protocols) in order to harmonize results from the literature. The need for revising the applicability range of mercury intrusion and the inappropriateness of nitrogen adsorption were pointed out. We finally present a table for selecting the most appropriate method to determine a desired property and propose guidelines for results interpretation from which future users could profit.

6.
ACS Appl Mater Interfaces ; 4(9): 4832-40, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-22928612

RESUMO

Composites of trimethylammonium-modified nanofibrillated cellulose and layered silicates (TMA-NFC/LS) were prepared by high-shear homogenization followed by pressure filtration and vacuum hot-pressing, which gave rise to particularly homogeneous dispersion of the silicate particles. Thirteen different clays and micas were employed. Water vapor barrier and mechanical properties (tensile strength, E-modulus, strain at break) of the composite films were investigated, considering the effects of layered silicate types and their concentration (in the range of 0 to 85 wt %). Good interactions between TMA-NFC and LS were obtained due to electrostatic attraction between cationic fibrils and anionic silicate layers, and even favored by high-shear homogenization process. Furthermore, oriented TMA-NFC/LS composite structure was achieved. Layered silicates exerted a pronounced influence on the water vapor barrier and mechanical properties; however, there was no common trend reflecting their types. The transport of water molecules through TMA-NFC/LS composites was studied considering both diffusion and adsorption mechanisms. As a result, diffusion pathways were proposed based on two new and one well-known models: the "native network", "covered fiber composite", and "fiber-brick composite" models. Importantly, it was found that the insertion of layered silicate particles did not improve automatically the barrier properties as indicated by the commonly used "fiber-brick composite" model. Mica R120 at a 50 wt % loading in composites with TMA-NFC matrix showed 30-fold improved water vapor permeability and 5-fold higher E-modulus compared to commercially used base paper.

7.
Small ; 7(6): 788-95, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21246713

RESUMO

Controlled, bottom-up self-assembly of ordered and hierarchical structures remains a major challenge and increasingly attracts attention in basic and technology-driven research. A simple process is described for the generation of such structures, which is based on slow solvent evaporation of a polymer solution blended with a crystal-forming species (Krogmann's salt). Upon drying, the viscosity of the polymer-blend solution increases in a progressing solidification zone, which precisely controls crystal growth by limiting the transport of the crystallizing units through this gel-like solidification zone and gives rise to a position- and time-dependent diffusion rate. The progressing solidification zone also leads to a preferential crystallographic orientation on a centimeter scale and introduces an instability that drives spatial pattern formation and hierarchical ordering on five distinct levels, ranging from the atomic positions in crystals to the assembly on a microscale and up to a centimeter length scale. Together with a quantitative description, the presented findings are envisaged to improve the understanding and application of periodic precipitation processes.


Assuntos
Cristalização/métodos , Polímeros/química
9.
Nanoscale ; 1(3): 374-81, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20648276

RESUMO

We present a method where epsilon-cobalt nanoparticles with an average diameter of 4.5 nm can be synthesized in a controlled process and in significantly larger quantities than previously reported in the literature, based on the thermal decomposition of dicobaltoctacarbonyl in the presence of oleic acid and trioctylphosphine oxide (TOPO). Moreover, since the resulting particles are coated with an oleate layer, as shown by infrared (IR) spectroscopy, the colloids can be re-dispersed in organic solvents. These dispersions are suitable for the preparation of nanocomposites by a simple procedure, i.e. mixing of the cobalt dispersion with a polymer solution followed by casting and solvent evaporation. Magnetization measurements confirm the expected superparamagnetic behavior for both the cobalt nanoparticles and the metal-polymer nanocomposites.

10.
ACS Appl Mater Interfaces ; 1(5): 1097-104, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-20355897

RESUMO

A successful strategy to obtain self-supporting (100 microm), UV-absorbing, and, in the visible region, highly transparent TiO2-poly(methyl methacrylate) (PMMA) films was developed. The 15 nm large anatase TiO2 nanocrystals were prepared in a nonaqueous sol-gel approach involving the mixing of Ti(O(i)Pr)4 and benzyl alcohol. The surfaces of the resulting particles were modified with minute amounts of organic ligands in order to make the particles easily dispersible in nonpolar media like xylene and dichloromethane and compatible with PMMA, a polymer of high optical transparency and considerable technical importance. The empirical optimization process of composite fabrication was supplemented by fundamental studies of the crystallization and growth mechanism of anatase particles in a nonaqueous medium. After the preparation of corresponding nanocomposites, the materials were investigated with respect to their UV absorption capability, optical transparency in the visible-wavelength region, and photodegradation.


Assuntos
Materiais Biocompatíveis/química , Membranas Artificiais , Nanopartículas/química , Nanopartículas/ultraestrutura , Titânio/química , Cristalização/métodos , Teste de Materiais , Tamanho da Partícula , Refratometria , Espalhamento de Radiação , Propriedades de Superfície , Raios Ultravioleta , Água/química
11.
J Nanosci Nanotechnol ; 6(2): 459-63, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16573045

RESUMO

Composite films of nanosized TiO2 particles, which contained rutile as the only detected crystal modification, and poly(vinyl alcohol), poly(vinyl pyrrolidone) or poly(4-vinylpyridine) were prepared from aqueous dispersions. During exposure to UV irradiation the nanocomposites comprising poly(vinyl alcohol) or poly(vinyl pyrrolidone) turned blue as a consequence of a partial reduction of TiIV to TiIII. The color intensity increased with increasing TiO2 content and irradiation time. This color did not fade after removal of the UV source in spite of the sensitivity of TiIII to atmospheric oxygen. By contrast, exposure to water caused the nanocomposites to adopt their original colorless appearance. These colorization-decolorization cycles could be repeated more than 10 times without apparent loss of intensity. Due to the small size of the TiO2 nanoparticles (ca. 3 nm), patterned blue structures of high resolution could be created in the polymeric materials, for instance with simple masking methods.


Assuntos
Nanotecnologia , Fotoquímica , Polímeros/química , Titânio/química , Propriedades de Superfície , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...