Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Manage ; 70(6): 926-949, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36207606

RESUMO

Biological communities in freshwater streams are often impaired by multiple stressors (e.g., flow or water quality) originating from anthropogenic activities such as urbanization, agriculture, or energy extraction. Restoration efforts in the Chesapeake Bay watershed, USA seek to improve biological conditions in 10% of freshwater tributaries and to protect the biological integrity of existing healthy watersheds. To achieve these goals, resource managers need to better understand which stressors are most likely driving biological impairment. Our study addressed this knowledge gap through two approaches: 1) reviewing and synthesizing published multi-stressor studies, and 2) examining 303(d) listed impairments linked to biological impairment as identified by jurisdiction regulatory agencies (the states within the watershed and the District of Columbia). Results identified geomorphology (i.e., physical habitat), salinity, and toxic contaminants as important for explaining variability in benthic community metrics in the literature review. Geomorphology (i.e., physical habitat and sediment), salinity, and nutrients were the most reported stressors in the jurisdictional impairment analysis. Salinity is likely a major stressor in urban and mining settings, whereas geomorphology was commonly reported in agricultural settings. Toxic contaminants, such as pesticides, were rarely measured; more research is needed to quantify the extent of their effects in the region. Flow alteration was also highlighted as an important urban stressor in the literature review but was rarely measured in the literature or reported by jurisdictions as a cause of impairment. These results can be used to prioritize stressor monitoring by managers, and to improve stressor identification methods for identifying causes of biological impairment.


Assuntos
Monitoramento Ambiental , Rios , Animais , Monitoramento Ambiental/métodos , Baías , Água Doce , Qualidade da Água , Ecossistema , Invertebrados
3.
J Environ Manage ; 322: 116068, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36058075

RESUMO

Anthropogenic alterations have resulted in widespread degradation of stream conditions. To aid in stream restoration and management, baseline estimates of conditions and improved explanation of factors driving their degradation are needed. We used random forests to model biological conditions using a benthic macroinvertebrate index of biotic integrity for small, non-tidal streams (upstream area ≤200 km2) in the Chesapeake Bay watershed (CBW) of the mid-Atlantic coast of North America. We utilized several global and local model interpretation tools to improve average and site-specific model inferences, respectively. The model was used to predict condition for 95,867 individual catchments for eight periods (2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019). Predicted conditions were classified as Poor, FairGood, or Uncertain to align with management needs and individual reach lengths and catchment areas were summed by condition class for the CBW for each period. Global permutation and local Shapley importance values indicated percent of forest, development, and agriculture in upstream catchments had strong impacts on predictions. Development and agriculture negatively influenced stream condition for model average (partial dependence [PD] and accumulated local effect [ALE] plots) and local (individual condition expectation and Shapley value plots) levels. Friedman's H-statistic indicated large overall interactions for these three land covers, and bivariate global plots (PD and ALE) supported interactions among agriculture and development. Total stream length and catchment area predicted in FairGood conditions decreased then increased over the 19-years (length/area: 66.6/65.4% in 2001, 66.3/65.2% in 2011, and 66.6/65.4% in 2019). Examination of individual catchment predictions between 2001 and 2019 showed those predicted to have the largest decreases in condition had large increases in development; whereas catchments predicted to exhibit the largest increases in condition showed moderate increases in forest cover. Use of global and local interpretative methods together with watershed-wide and individual catchment predictions support conservation practitioners that need to identify widespread and localized patterns, especially acknowledging that management actions typically take place at individual-reach scales.


Assuntos
Baías , Rios , Agricultura , Ecossistema , Monitoramento Ambiental/métodos , Aprendizado de Máquina
4.
PLoS One ; 16(12): e0260654, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34882701

RESUMO

Climate change is impacting the function and distribution of habitats used by marine, coastal, and diadromous species. These impacts often exacerbate the anthropogenic stressors that habitats face, particularly in the coastal environment. We conducted a climate vulnerability assessment of 52 marine, estuarine, and riverine habitats in the Northeast U.S. to develop an ecosystem-scale understanding of the impact of climate change on these habitats. The trait-based assessment considers the overall vulnerability of a habitat to climate change to be a function of two main components, sensitivity and exposure, and relies on a process of expert elicitation. The climate vulnerability ranks ranged from low to very high, with living habitats identified as the most vulnerable. Over half of the habitats examined in this study are expected to be impacted negatively by climate change, while four habitats are expected to have positive effects. Coastal habitats were also identified as highly vulnerable, in part due to the influence of non-climate anthropogenic stressors. The results of this assessment provide regional managers and scientists with a tool to inform habitat conservation, restoration, and research priorities, fisheries and protected species management, and coastal and ocean planning.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecossistema , Estuários , New England
5.
Sci Total Environ ; 789: 147985, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34323823

RESUMO

Stream ecosystems are complex networks of interacting terrestrial and aquatic drivers. To untangle these ecological networks, efforts evaluating the direct and indirect effects of landscape, climate, and instream predictors on biological condition through time are needed. We used structural equation modeling and leveraged a stream survey program to identify and compare important predictors driving condition of benthic macroinvertebrate and fish assemblages. We used data resampled 14 years apart at 252 locations across Maryland, USA. Sample locations covered a wide range of conditions that varied spatiotemporally. Overall, the relationship directions were consistent between sample periods, but their relative strength varied temporally. For benthic macroinvertebrates, we found that the total effect of natural landscape (e.g., elevation, longitude, latitude, geology) and land use (i.e., forest, development, agriculture) predictors was 1.4 and 1.5 times greater in the late 2010s compared to the 2000s. Moreover, the total effect of water quality (e.g., total nitrogen and conductivity) and habitat (e.g., embeddedness, riffle quality) was 1.2 and 4.8 times lower in the 2010s, respectively. For fish assemblage condition, the total effect of land use-land cover predictors was 2.3 times greater in the 2010s compared to the 2000s, while the total effect of local habitat was 1.4 times lower in the 2010s, respectively. As expected, we found biological assemblages in catchments with more agriculture and urban development were generally comprised of tolerant, generalist species, while assemblages in catchments with greater forest cover had more-specialized, less-tolerant species (e.g., Ephemeroptera, Plecoptera, and Trichoptera taxa, clingers, benthic and lithophilic spawning fishes). Changes in the relative importance of landscape and land-use predictors suggest other correlated, yet unmeasured, proximal factors became more important over time. By untangling these ecological networks, stakeholders can gain a better understanding of the spatiotemporal relationships driving biological condition to implement management practices aimed at improving stream condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...