Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(5): 052502, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822004

RESUMO

The neutron-capture reaction plays a critical role in the synthesis of the elements in stars and is important for societal applications including nuclear power generation and stockpile-stewardship science. However, it is difficult-if not impossible-to directly measure neutron capture cross sections for the exotic, short-lived nuclei that participate in these processes. In this Letter we demonstrate a new technique which can be used to indirectly determine neutron-capture cross sections for exotic systems. This technique makes use of the (d,p) transfer reaction, which has long been used as a tool to study the structure of nuclei. Recent advances in reaction theory, together with data collected using this reaction, enable the determination of neutron-capture cross sections for short-lived nuclei. A benchmark study of the ^{95}Mo(d,p) reaction is presented, which illustrates the approach and provides guidance for future applications of the method with short-lived isotopes produced at rare isotope accelerators.

2.
Phys Rev Lett ; 121(5): 052501, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118303

RESUMO

Obtaining reliable data for nuclear reactions on unstable isotopes remains an extremely important task and a formidable challenge. Neutron capture cross sections-crucial ingredients for models of astrophysical processes, national security applications, and simulations of nuclear energy generation-are particularly elusive, as both projectile and target in the reaction are unstable. We demonstrate a new method for determining cross sections for neutron capture on unstable isotopes, using ^{87}Y(n,γ) as a prototype. To validate the method, a benchmark experiment is carried out to obtain the known ^{90}Zr(n,γ) cross section analogously. Our approach, which employs an indirect ("surrogate") measurement combined with theory, can be generalized to a larger class of nuclear reactions. It can be used both with traditional stable-beam experiments and in inverse kinematics at rare-isotope facilities.

3.
Phys Rev Lett ; 100(14): 142501, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18518025

RESUMO

A simple, empirical, easy-to-measure effective order parameter of a first-order phase transition in atomic nuclei is presented, namely, the ratio of the energies of the first excited 6+ and 0+ states, distinguishing between first- and second-order transitions, and taking on a special value in the critical region, as data in Nd-Dy show. In the large NB limit of the interacting boson approximation model, a repeating degeneracy between alternate yrast and successive 0+ states is found in the critical region around the line of a first-order phase transition, pointing to a possible underlying symmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...