Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 142(11): 1982-1992, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28509933

RESUMO

Nanotoxicology and nanomedicine investigations often require the probing of nano-objects such as fibres and particles in biological samples and cells, whilst internalization and intracellular destiny are the main issues for in vitro cellular studies. Various high resolution microscopy techniques are well suited for providing this highly sought-after information. However, sample preparation, nanomaterial composition and sectioning challenges make it often difficult to establish whether the fibres or particles have been internalized or they are simply overlaying or underlying the biological matter. In this paper we suggest a novel suitable combination of two different microscopic techniques to reveal in intact cells the uptake of asbestos fibres by mesothelial cells. After exposure to asbestos fibres and fixation, cells were first analysed under the AFM instrument and then imaged under the TwinMic soft X-ray microscope at Elettra Sincrotrone. The suggested approach combines standard soft X-ray microscopy imaging and AFM microscopy, with a common non-invasive sample preparation protocol which drastically reduces the experimental uncertainty and provides a quick and definitive answer to the nanoparticle cellular and tissue uptake.


Assuntos
Amianto/análise , Células Epiteliais/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Microscopia de Força Atômica , Raios X , Linhagem Celular , Humanos
2.
Nanotechnology ; 28(15): 155102, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28177298

RESUMO

Cell-cell and cell-matrix interactions are essential to the survival and proliferation of most cells, and are responsible for triggering a wide range of biochemical pathways. More recently, the biomechanical role of those interactions was highlighted, showing, for instance, that adhesion forces are essential for cytoskeleton organization. Silicon nanowires (Si NWs) with their small size, high aspect ratio and anisotropic mechanical response represent a useful model to investigate the forces involved in the adhesion processes and their role in cellular development. In this work we explored and quantified, by single cell force spectroscopy (SCFS), the interaction of mouse embryonic fibroblasts with a flexible forest of Si NWs. We observed that the cell adhesion forces are comparable to those found on collagen and bare glass coverslip, analogously the membrane tether extraction forces are similar to that on collagen but stronger than that on bare flat glass. Cell survival did not depend significantly on the substrate, although a reduced proliferation after 36 h was observed. On the contrary both cell morphology and cytoskeleton organization revealed striking differences. The cell morphology on Si-NW was characterized by a large number of filopodia and a significant decrease of the cell mobility. The cytoskeleton organization was characterized by the absence of actin fibers, which were instead dominant on collagen and flat glass support. Such findings suggest that the mechanical properties of disordered Si NWs, and in particular their strong asymmetry, play a major role in the adhesion, morphology and cytoskeleton organization processes. Indeed, while adhesion measurements by SCFS provide out-of-plane forces values consistent with those measured on conventional substrates, weaker in-plane forces hinder proper cytoskeleton organization and migration processes.


Assuntos
Citoesqueleto de Actina/metabolismo , Fibroblastos/citologia , Silício/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Camundongos , Nanofios/química , Tamanho da Partícula , Silício/química , Propriedades de Superfície
3.
Nanoscale ; 6(22): 13651-9, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25274074

RESUMO

A key challenge for the development of plasmonic nanodevices is their integration into active semiconducting structures. Gold-catalysed semiconductor nanowires are promising candidates for their bottom-up growth process that aligns a single gold nanoparticle at each nanowire apex. Unfortunately these show extremely poor plasmonic properties. In this work, we propose a way to enhance their plasmonic resonance up to those of ideal and isolated gold nanoparticles. A suitable purification protocol compatible with GaAs and ZnSe molecular beam epitaxy of nanowires is used to produce plasmonic active nanowires, which were used to enhance the Raman signal of pentacene and graphene oxide. Enhancement factors up to three orders of magnitude are demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...