Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 107(2): 606-13, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24772540

RESUMO

High-pressure processing (HPP) combined with heat or cold has been proposed as an alternative quarantine process for Mexican fruit fly Anastrepha ludens Loew (Diptera: Tephritidae). HPP conditions at levels higher than 100 MPa applied to destroy eggs and larvae can also affect the postharvest physiology of the fruits. HPP at pressure levels in the range of 50-100 MPa is recommended. Eggs have been reported as being more resistant to HPP than larvae. Therefore, the objective of this study was to assess the effect of a precooling treatment on the biological viability of A. ludens eggs treated by HPP at 0 degrees C. The capability of nondestroyed eggs to develop and reproduce was also evaluated. One-, 2-, 3-, and 4-d-old eggs were precooled in ice water for 0 (control) 3, 6, 12, or 24 h and then pressurized at 50, 70, or 90 MPa for 0, 3, 6, or 9 min at 0 degrees C. The hatching capability of pressurized eggs was evaluated. The most lethal effect of HPP on nonprecooled eggs (0 h) was obtained at 90 MPa for 9 min, destroying all eggs except for the 3-d-old ones, which showed an 11.8% hatch rate. Precooling treatment improved the hatch rate of eggs ranging from 4 to 50% depending on precooling conditions. The main effect was observed after 6 h. These results suggest that precooling modified the biochemistry and physiology of eggs, improving their resistance to HPP treatments.


Assuntos
Controle de Insetos/métodos , Tephritidae/fisiologia , Animais , Temperatura Baixa , Larva/crescimento & desenvolvimento , Larva/fisiologia , Óvulo/crescimento & desenvolvimento , Óvulo/fisiologia , Pressão , Quarentena , Tephritidae/crescimento & desenvolvimento , Fatores de Tempo
2.
Carbohydr Polym ; 98(1): 1018-24, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23987442

RESUMO

High pressure processing (HPP) technology was used to modify the structural composition of sugarcane bagasse. The effect of pressure (0, 150 and 250 MPa), time (5 and 10 min) and temperature (25 and 50 °C) as well as the addition of phosphoric acid, sulfuric acid and NaOH during the HPP treatment were assessed in terms of compositional analysis of the lignocellulosic fraction, structural changes and crystallinity of the bagasse. The effect of HPP pretreatment on the bagasse structure was also evaluated on the efficiency of the enzymatic hydrolysis of bagasse. Results showed that 68.62 and 45.84% of the hemicellulose fraction was degraded by pretreating at 250 MPa with sulfuric and phosphoric acids, respectively. The removal of lignin (54.10%) was higher with the HPP-NaOH treatment. The compacted lignocellulosic structure of the raw bagasse was modified by the HPP treatments and showed few cracks, tiny holes and some fragments flaked off from the surface. Structural changes were higher at 250 MPa and 50 °C. The X ray diffraction (XRD) patterns of the raw bagasse showed a major diffraction peak of the cellulose crystallographic 2θ planes ranging between 22 and 23°. The distribution of the crystalline structure of cellulose was affected by increasing the pressure level. The HPP treatment combined with NaOH 2% led to the higher glucose yield (25 g/L) compared to the combination of HPP with water and acids (>5 g/L). Results from this work suggest that HPP technology may be used to pretreat sugarcane bagasse.


Assuntos
Celulose/química , Pressão , Saccharum/química , Celulase/metabolismo , Celulose/metabolismo , Hidrólise , Lignina/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...