RESUMO
The increase in fertilizer prices was 20% after the pandemic, which increased the cost of crop production in Peru. For this reason, research was conducted on the analysis of the chemical and biological characteristics and their relationship with the yield of radish nourished with compost based on plant residues. The objective was to analyze the chemical and biological characteristics and their relationship with the yield of radish nourished with vegetable waste-based compost. It is based on the methodology applied with an experimental approach; therefore, the statistical model of the Completely Randomized Block Design was used, which consisted of 3 blocks and 5 treatments that were T1 with 0, T2 with 4, T3 with 6, T4 with 8 and T5 with 10 t/ha of compost based on vegetable residues, and the doses were applied 14 days after sowing. Physical characteristics (total plant length, plant weight, bulb equatorial diameter and marketable yield), nutrient concentrations (nitrogen, potassium, phosphorus, calcium, magnesium, sulfur, molybdenum, iron, manganese, copper, zinc, boron, chlorides and sodium) in leaves and stomata density were evaluated. The results determined that T5 stood out in total plant length with 28.07 cm, plant weight with 75 g, bulb equatorial diameter with 4.52 cm and commercial yield with 22.53 t/ha. In the total contribution of nitrogen in relation to yield with 300.44 kg/ha. Profitability with 186.8%. Quantification of stomata per treatment with 598 stomata/mm2 and concentration of nutrients in leaves at T3 with nitrogen, potassium, phosphorus and magnesium. It concludes that T5, which has an adequate concentration of nutrients in leaves such as magnesium, manganese, zinc and stomata density of 598 stomata/mm2 influenced optimal biochemical reactions that resulted in the highest yield with 22.53 t/ha, differing by 31.38% in relation to T1.
Assuntos
Compostagem , Fertilizantes , Raphanus , Raphanus/química , Raphanus/crescimento & desenvolvimento , Fertilizantes/análise , Solo/químicaRESUMO
Bioavailability of nutrients, the scarcity of synthetic fertilisers, and the rising cost of fuel have all contributed to an increase in production costs, which has in turn reduced crop productivity and led scientists to seek out new methods to ensure high-quality output. In this context, various cytokinins dosages were tested in Peru to see whether they affected the quality of caigua, in an effort to address these issues. To mitigate these problems, a pot experiment was carried out to check the effects of various doses of cytokinin in the quality of caigua in Peru. The experiment consisted of 5 treatments including (0, 50, 100, 150 and 200 mL of cytokinin) by using (Anthesis Plus per 200 L of water) as a source, each with three replicates and placed following a randomized complete block design (RCBD). Treatment with 100 mL of cytokinins foliar analysis resulted in a caigua length of 18.9 cm, an increase in diameter of 5.65 cm, and an improvement in pulp thickness of 7.60 millimeters. Physiological parameters of caigua plants taken after 45 days of sowing were considerably improved with the same treatment. Similarly, N, K and Zn concentration in leaf was higher in case of 100 mL of cytokinins foliar analysis. Therefore, policymakers must advise using the recommended quantity of cytokinins to bring about regime transition, and formers can gain by injecting 100 mL of cytokinins to boost production and the economy. It was concluded that the adequate dose of cytokinins is in treatment T3, which raised value of potassium concentration in leaves, this influenced optimal development, strengthening against environmental stress and therefore quality. For this reason, research was carried out on the comparative study of cytokinin doses in the quality of caigua in Peru; the objective was to determine the appropriate dose to obtain higher quality fruit. Likewise, it was underlined that the objective was to employ an ecological alternative of plant origin such as the usage of phytohormone that stimulates the growth of the plant and consequently the quality of the fruit. The obtained the results were served as a recommendation for farmers in the area.
Assuntos
Citocininas , Reguladores de Crescimento de Plantas , Citocininas/farmacologia , Peru , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/fisiologia , Estresse FisiológicoRESUMO
Chelates are nutrient-rich compounds that enhance the condition of plant tissues as micronutrients. Micronutrient deficiencies particularly iron (Fe) and zinc (Zn) leads to various problems for plant including chlorosis and necrosis etc. An adequate intake of Fe and Zn etc. is required by the human body. Biofortification of cereals with Fe and Zn is seen as a cost-effective solution to the problem of Fe and Zn deficiencies as well. In recent decades, many chelating compounds have been established and incorporated into agricultural systems. The most recent formulation involves the use of amino acids synthesized with one or more nutrient ions to improve fertilizer efficiency and better respond to environmental conservation. In addition to its primary function as a source of micronutrients, aminochelled are an active nitrogen (N) stimulant in plant nutrition, preventing the negative effects of basic N fertilizers like urea. The use of amino chelates, rather than just chemical fertilizers, has been shown to provide better production and quality as well as higher nutritional concentrations in several experiments. Furthermore, this review sheds light on various aspects of amino chelates fertilizers including types, history, and their effects on agricultural crops. In spite of amino chelates fast dominance in many countries' fertilizer countries, there is not enough scientific data and knowledge on the specific reactions of plants to biotic and abiotic stresses from amino fertilizers.
Assuntos
Fertilizantes , Ferro , Humanos , Ferro/metabolismo , Agricultura , Zinco/metabolismo , Micronutrientes/metabolismoRESUMO
Chelates are nutrient-rich compounds that enhance the condition of plant tissues as micronutrients. Micronutrient deficiencies particularly iron (Fe) and zinc (Zn) leads to various problems for plant including chlorosis and necrosis etc. An adequate intake of Fe and Zn etc. is required by the human body. Biofortification of cereals with Fe and Zn is seen as a cost-effective solution to the problem of Fe and Zn deficiencies as well. In recent decades, many chelating compounds have been established and incorporated into agricultural systems. The most recent formulation involves the use of amino acids synthesized with one or more nutrient ions to improve fertilizer efficiency and better respond to environmental conservation. In addition to its primary function as a source of micronutrients, aminochelled are an active nitrogen (N) stimulant in plant nutrition, preventing the negative effects of basic N fertilizers like urea. The use of amino chelates, rather than just chemical fertilizers, has been shown to provide better production and quality as well as higher nutritional concentrations in several experiments. Furthermore, this review sheds light on various aspects of amino chelates fertilizers including types, history, and their effects on agricultural crops. In spite of amino chelates fast dominance in many countries' fertilizer countries, there is not enough scientific data and knowledge on the specific reactions of plants to biotic and abiotic stresses from amino fertilizers.
Os quelatos são compostos ricos em nutrientes que melhoram a condição dos tecidos vegetais como micronutrientes. Deficiências de micronutrientes, particularmente ferro (Fe) e zinco (Zn), levam a vários problemas para as plantas, incluindo clorose e necrose, etc. A ingestão de uma quantidade adequada de Fe e Zn, etc., é exigida pelo corpo humano. A biofortificação de cereais com Fe e Zn também é vista como uma solução econômica para o problema das deficiências de Fe e Zn. Nas últimas décadas, muitos compostos quelantes foram estabelecidos e incorporados em sistemas agrícolas. A formulação mais recente envolve o uso de aminoácidos sintetizados com um ou mais íons nutrientes para melhorar a eficiência do fertilizante e responder melhor à conservação ambiental. Além de sua função primária como fonte de micronutrientes, os aminoquelados são um estimulante de nitrogênio (N) ativo na nutrição das plantas, evitando os efeitos negativos de fertilizantes nitrogenados básicos como a ureia. O uso de aminoquelatos, ao invés de apenas fertilizantes químicos, tem mostrado proporcionar melhor produção e qualidade, bem como maiores concentrações nutricionais em vários experimentos. Além disso, a presente revisão lança luz sobre vários aspectos dos fertilizantes aminoquelatos, incluindo tipos, história e seus efeitos nas culturas agrícolas. Apesar do domínio rápido dos aminoquelatos em muitos países de fertilizantes, não há dados científicos suficientes e conhecimento sobre as reações específicas das plantas aos estresses bióticos e abióticos dos fertilizantes amino.