Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 102(8): 6781-6789, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31155253

RESUMO

Selenium is included in selenoprotein sequences, which participate in enzymatic processes necessary to preserve optimal health. Some lactic acid bacteria carry out the biotransformation of inorganic selenium in their metabolism. The complete biochemical mechanism of selenium biotransformation is still unknown; however, it is known that both the selenocysteine synthesis process and its subsequent incorporation into selenoproteins include serine as part of the action of seryl-RNAt synthetase. Therefore, the aim of this work was to determine the effect of serine during the biotransformation of selenium and the subsequence growth of Streptococcus thermophilus in a minimal medium. Two culture media were prepared, one enriched with the minimum inhibitory concentration of selenite (as Na2SeO3) and the other as a mixture of the minimum inhibitory concentration of selenite and serine. The absorbed selenium concentration was measured by inductively coupled plasma, and the selenocysteine identification was performed by reverse-phase HPLC. In the second culture medium, decreases in both times, the adaptation and the logarithmic phase, were observed. According to the results, it was possible to establish that the presence of serine allowed the biotransformation of selenite into selenocysteine by Strep. thermophilus.


Assuntos
Meios de Cultura/química , Selênio/metabolismo , Selenocisteína/biossíntese , Serina/administração & dosagem , Streptococcus thermophilus/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Selenoproteínas , Serina/análise
2.
J Microbiol Biotechnol ; 28(10): 1581-1588, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30196594

RESUMO

The growth of lactic acid bacteria (LAB) generates a high number of metabolites related to aromas and flavors in fermented dairy foods. These microbial proteases are involved in protein hydrolysis that produces necessary peptides for their growth and releases different molecules of interest, like bioactive peptides, during their activity. Each genus in particular has its own proteolytic system to hydrolyze the necessary proteins to meet its requirements. This review aims to highlight the differences between the proteolytic systems of Streptococcus thermophilus and other lactic acid bacteria (Lactococcus and Lactobacillus) since they are microorganisms that are frequently used in combination with other LAB in the elaboration of fermented dairy products. Based on genetic studies and in vitro and in vivo tests, the proteolytic system of Streptococcus thermophilus has been divided into three parts: 1) a serine proteinase linked to the cellular wall that is activated in the absence of glutamine and methionine; 2) the transport of peptides and oligopeptides, which are integrated in both the Dpp system and the Ami system, respectively; according to this, it is worth mentioning that the Ami system is able to transport peptides with up to 23 amino acids while the Opp system of Lactococcus or Lactobacillus transports chains with less than 13 amino acids; and finally, 3) peptide hydrolysis by intracellular peptidases, including a group of three exclusive of S. thermophilus capable of releasing either aromatic amino acids or peptides with aromatic amino acids.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Streptococcus thermophilus/metabolismo , Sistemas de Transporte de Aminoácidos/classificação , Aminoácidos/metabolismo , Produtos Fermentados do Leite/microbiologia , Lactobacillales/enzimologia , Lactobacillales/metabolismo , Peptídeo Hidrolases/classificação , Streptococcus thermophilus/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...