Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068629

RESUMO

Sugarcane diseases can be controlled by an integrated management approach where biotechnological tools can successfully contribute. The Obispo Colombres Agroindustrial Experimental Station (EEAOC) in Tucumán (Argentina's main sugarcane producer) has successfully implemented multiple strategies that greatly enhance the productivity of sugarcane fields. The local breeding program develops resistant varieties by applying molecular markers to reveal the presence of Bru1 gene for brown rust resistance throughout the EEAOC germplasm collection. In addition, SNP alleles linked to novel sources of resistance were identified following a selective genotyping strategy. Another strategy is the implementation of a seed cane sanitation project using hydrothermal therapy, an in vitro culture technique, molecular diagnosis of diseases, and bionanoparticles. As a result, the incidence of systemic diseases has significantly decreased in the production fields. More recently, the use of biological products has shown to be effective for disease control in EEAOC varieties. In summary, several biotechnological strategies including molecular markers associated with resistant sources, in vitro culture of apical meristems, molecular diagnostic techniques, and the use of bioproducts are being successfully used for the sustainable management of sugarcane diseases in Tucumán, Argentina.

2.
Sci Rep ; 12(1): 11294, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788151

RESUMO

Drought severely affects soybean productivity, challenging breeding/management strategies to increase crop resilience. Hormone-based biostimulants like brassinosteroids (BRs) modulate growth/defence trade-off, mitigating yield losses; yet, natural molecule's low stability challenges the development of cost-effective and long-lasting analogues. Here, we investigated for the first time the effects of BR functional analogue DI-31 in soybean physiology under drought by assessing changes in growth, photosynthesis, water relations, antioxidant metabolism, nodulation, and nitrogen homeostasis. Moreover, DI-31 application frequencies' effects on crop cycle and commercial cultivar yield stabilisation under drought were assessed. A single foliar application of DI-31 favoured plant drought tolerance, preventing reductions in canopy development and enhancing plant performance and water use since the early stages of stress. The analogue also increased the antioxidant response, favouring nitrogen homeostasis maintenance and attenuating the nodular senescence. Moreover, foliar applications of DI-31 every 21 days enhanced the absolute yield by ~ 9% and reduced drought-induced yield losses by ~ 7% in four commercial cultivars, increasing their drought tolerance efficiency by ~ 12%. These findings demonstrated the practical value of DI-31 as an environmentally friendly alternative for integrative soybean resilience management under drought.


Assuntos
Secas , Fabaceae , Antioxidantes , Brassinosteroides/metabolismo , Fabaceae/metabolismo , Nitrogênio , Melhoramento Vegetal , Glycine max/metabolismo , Água
3.
Sci Rep ; 12(1): 10872, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761017

RESUMO

Identifying high-yield genotypes under low water availability is essential for soybean climate-smart breeding. However, a major bottleneck lies in phenotyping, particularly in selecting cost-efficient markers associated with stress tolerance and yield stabilization. Here, we conducted in-depth phenotyping experiments in two soybean genotypes with contrasting drought tolerance, MUNASQA (tolerant) and TJ2049 (susceptible), to better understand soybean stress physiology and identify/statistically validate drought-tolerance and yield-stabilization traits as potential breeding markers. Firstly, at the critical reproductive stage (R5), the molecular differences between the genotype's responses to mild water deficit were explored through massive analysis of cDNA ends (MACE)-transcriptomic and gene ontology. MUNASQA transcriptional profile, compared to TJ2049, revealed significant differences when responding to drought. Next, both genotypes were phenotyped under mild water deficit, imposed in vegetative (V3) and R5 stages, by evaluating 22 stress-response, growth, and water-use markers, which were subsequently correlated between phenological stages and with yield. Several markers showed high consistency, independent of the phenological stage, demonstrating the effectiveness of the phenotyping methodology and its possible use for early selection. Finally, these markers were classified and selected according to their cost-feasibility, statistical weight, and correlation with yield. Here, pubescence, stomatal density, and canopy temperature depression emerged as promising breeding markers for the early selection of drought-tolerant soybeans.


Assuntos
Fabaceae , Glycine max , Secas , Melhoramento Vegetal , Glycine max/genética , Água
4.
Front Plant Sci ; 12: 768609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858464

RESUMO

Sugarcane (Saccharum spp.) is a tropical and sub-tropical, vegetative-propagated crop that contributes to approximately 80% of the sugar and 40% of the world's biofuel production. Modern sugarcane cultivars are highly polyploid and aneuploid hybrids with extremely large genomes (>10 Gigabases), that have originated from artificial crosses between the two species, Saccharum officinarum and S. spontaneum. The genetic complexity and low fertility of sugarcane under natural growing conditions make traditional breeding improvement extremely laborious, costly and time-consuming. This, together with its vegetative propagation, which allows for stable transfer and multiplication of transgenes, make sugarcane a good candidate for crop improvement through genetic engineering. Genetic transformation has the potential to improve economically important properties in sugarcane as well as diversify sugarcane beyond traditional applications, such as sucrose production. Traits such as herbicide, disease and insect resistance, improved tolerance to cold, salt and drought and accumulation of sugar and biomass have been some of the areas of interest as far as the application of transgenic sugarcane is concerned. Although there have been much interest in developing transgenic sugarcane there are only three officially approved varieties for commercialization, all of them expressing insect-resistance and recently released in Brazil. Since the early 1990's, different genetic transformation systems have been successfully developed in sugarcane, including electroporation, Agrobacterium tumefaciens and biobalistics. However, genetic transformation of sugarcane is a very laborious process, which relies heavily on intensive and sophisticated tissue culture and plant generation procedures that must be optimized for each new genotype to be transformed. Therefore, it remains a great technical challenge to develop an efficient transformation protocol for any sugarcane variety that has not been previously transformed. Additionally, once a transgenic event is obtained, molecular studies required for a commercial release by regulatory authorities, which include transgene insertion site, number of transgenes and gene expression levels, are all hindered by the genomic complexity and the lack of a complete sequenced reference genome for this crop. The objective of this review is to summarize current techniques and state of the art in sugarcane transformation and provide information on existing and future sugarcane improvement by genetic engineering.

5.
J Agric Food Chem ; 69(42): 12424-12432, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34649430

RESUMO

Many natural compounds can activate the plant immunity, and for this reason, they have attracted special interest in crop disease management. Previously, we isolated from strawberry leaves an ellagitannin (HeT), which elicits plant defense responses. In this research, we investigated bioactive compounds from field-collected strawberry leaves capable of inducing defense responses in Arabidopsis thaliana against a bacterial pathogen. Methanolic extracts of strawberry leaves sampled at different months were obtained and compared. The highest content of total soluble phenolic compounds was found in the methanolic extracts of leaves sampled in December (DME). The defense response induced in A. thaliana by DME was attributed to two ellagitannins, the HeT and galloyl-HHDP-glucose. Both compounds exhibited phytoprotective effects against Pseudomonas viridiflava and induced the expression of PDF1.2 and PR1 genes. These results provide an economic value to strawberry leaves, normally discarded at the end of the harvest stage of the crop, as a raw material for plant health enhancer bioinputs.


Assuntos
Fragaria , Fragaria/genética , Taninos Hidrolisáveis , Folhas de Planta , Pseudomonas , Estações do Ano
6.
Sci Rep ; 10(1): 8196, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424195

RESUMO

An increasing interest in the development of products of natural origin for crop disease and pest control has emerged in the last decade. Here we introduce a new family of strawberry acyl glycosides (SAGs) formed by a trisaccharide (GalNAc-GalNAc-Glc) and a monounsaturated fatty acid of 6 to 12 carbon atoms linked to the glucose unit. Application of SAGs to Arabidopsis thaliana (hereafter Arabidopsis) plants triggered a transient oxidative burst, callose deposition and defense gene expression, accompanied by increased protection against two phytopathogens, Pseudomonas viridiflava and Botrytis cinerea. SAGs-induced disease protection was also demonstrated in soybean infected with the causal agent of target spot, Corynespora cassiicola. SAGs were shown to exhibit important antimicrobial activity against a wide-range of bacterial and fungal phytopathogens, most probably through membrane destabilization, and the potential use of SAGs as a biofungicide for postharvest disease protection was demonstrated on lemon fruits infected with Penicillium digitatum. Plant growth promotion by application of SAGs was shown by augmented primary root elongation, secondary roots development and increased siliques formation in Arabidopsis, whereas a significant increment in number of seed pods was demonstrated in soybean. Stimulation of radicle development and the induction of an auxin-responsive reporter system (DR5::GUS) in transgenic Arabidopsis plants, suggested that SAGs-stimulated growth at least partly acts through the auxin response pathway. These results indicate that strawberry fatty acid glycosides are promising candidates for the development of environmental-friendly products for disease management in soybean and lemon.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Fragaria/química , Glicosídeos/química , Glicosídeos/farmacologia , Doenças das Plantas/prevenção & controle , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Bioensaio , Botrytis/efeitos dos fármacos , Botrytis/fisiologia , Doenças das Plantas/microbiologia , Pseudomonas/efeitos dos fármacos , Pseudomonas/fisiologia
7.
Phytopathology ; 109(1): 63-73, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30009663

RESUMO

Charcoal rot, caused by the fungus Macrophomina phaseolina, is an economically important disease of soybean (Glycine max) worldwide. Objectives of the present research were to (i) study the genetic and pathogenic diversity in a collection of M. phaseolina isolates from Argentina and Paraguay and (ii) develop an improved in vitro phenotyping method to evaluate disease response of soybean genotypes to M. phaseolina isolates. Cluster analysis showed no clear association among simple sequence repeat profiles, year of collection, pathogenicity, and geographical origin of the isolates from Argentina and Paraguay. Subsequently, the response of four soybean genotypes against seven M. phaseolina isolates was evaluated in the field and the results were confirmed using the in vitro assay developed. This assay, which is based on root disease development on soybean seedlings, allowed the detection of a differential level of aggressiveness among the isolates on four soybean genotypes. The results suggest the existence of specific interactions among soybean genotypes and M. phaseolina isolates. In addition, cultivar Munasqa RR showed a superior response against M. phaseolina compared with DT 97-4290 (moderately resistant), thus becoming a novel source of resistance to charcoal rot.


Assuntos
Ascomicetos/patogenicidade , Resistência à Doença/genética , Glycine max/genética , Doenças das Plantas/genética , Argentina , Genótipo , Paraguai , Fenótipo , Doenças das Plantas/microbiologia , Glycine max/microbiologia
8.
Mol Plant Pathol ; 20(4): 589-598, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30537413

RESUMO

Citrus canker is an important disease of citrus, whose causal agent is the bacterium Xanthomonas citri ssp. citri (Xcc). In previous studies, we found a group of Xcc mutants, generated by the insertion of the Tn5 transposon, which showed impaired ability to attach to an abiotic substrate. One of these mutants carries the Tn5 insertion in hupB, a gene encoding a bacterial histone-like protein, homologue to the ß-subunit of the Heat-Unstable (HU) nucleoid protein of Escherichia coli. These types of protein are necessary to maintain the bacterial nucleoid organization and the global regulation of gene expression. Here, we characterized the influence of the mutation in hupB regarding Xcc biofilm formation and virulence. The mutant strain hupB was incapable of swimming in soft agar, whereas its complemented strain partially recovered this phenotype. Electron microscope imaging revealed that impaired motility of hupB was a consequence of the absence of the flagellum. Comparison of the expression of flagellar genes between the wild-type strain and hupB showed that the mutant exhibited decreased expression of fliC (encoding flagellin). The hupB mutant also displayed reduced virulence compared with the wild-type strain when they were used to infect Citrus lemon plants using different infection methods. Our results therefore show that the histone-like protein HupB plays an essential role in the pathogenesis of Xcc through the regulation of biofilm formation and biosynthesis of the flagellum.


Assuntos
Biofilmes/crescimento & desenvolvimento , Flagelos/metabolismo , Xanthomonas/metabolismo , Xanthomonas/patogenicidade , Mutação , Virulência/genética , Virulência/fisiologia , Xanthomonas/genética
9.
Front Microbiol ; 9: 1548, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061870

RESUMO

Klebsiella spp. have been isolated from many different environmental habitats but have mainly been associated with nosocomial acquired diseases in humans. Although there are many recently published sequenced genomes of members of this genus, there are very few studies on whole genome comparisons between clinical and non-clinical isolates, and it is therefore still an open question if a strain found in nature is capable of infecting humans/animals. Klebsiella michiganensis Kd70 was isolated from the intestine of larvae of Diatraea saccharalis but genome analysis revealed multiple genes associated with colonization and growth promotion in plants suggesting an endophytic lifestyle. Kd70 cells labeled with gfp confirmed capability of root colonization and soil application of Kd70 promoted growth in greenhouse grown sugarcane. Further genomic analysis showed that the Kd70 genome harbored fewer mammalian virulence factors and no pathogen island-like regions when compared to clinical isolates of this species, suggesting attenuated animal/human pathogenicity. This postulation was corroborated by in vivo experiments in which it was demonstrated that Kd70 was unable to infect the mouse urinary tract. This is to the best of our knowledge the first experimental example of a member of a pathogenic Klebsiella spp. unable to infect a mammalian organism. A proteomic comparison deduced from the genomic sequence between Kd70 and several other K. michiganensis strains showed a high similarity with isolates from many different environments including clinical strains, and demonstrated the existence of conserved genetic lineages within this species harboring members from different ecological niches and geographical locations. Furthermore, most genetic differences were found to be associated with genomic islands of clinical isolates, suggesting that evolutionary adaptation of animal pathogenicity to a large extent has depended on horizontal gene transfer. In conclusion our results demonstrate the importance of conducting thorough in vivo pathogenicity studies before presupposing animal/human virulence of non-clinical bacterial isolates.

10.
Front Plant Sci ; 9: 844, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087681

RESUMO

In this work, we present a novel biostimulant for sustainable crop disease management, PSP1, based on the plant defense-elicitor AsES, an extracellular protease produced by the strawberry fungal pathogen Acremonium strictum. Fungal fermentation conditions and downstream processing were determined to maximize extracellular protein production, product stability and a high plant defense-eliciting activity, as monitored by anthracnose resistance in supernatant-treated strawberry plants subsequently infected with a virulent strain of Colletotrichum acutatum. Fermentation batches were shown to reduce anthracnose development by 30-60% as compared to infected non-treated plants. Product formulation was shown to be stable for 6 months when stored at temperatures up to 45°C and toxicological tests showed that PSP1 was harmless to beneficial organisms and non-toxic to mammalian species at concentrations 50 times higher than those used in plant experiments. Furthermore, disease protection studies using dilutions of PSP1 indicated that there is a minimum threshold protease activity needed to induce pathogen defense in strawberry and that this induction effect is dose-independent. A significant characteristic of PSP1 is its broad-range protection against different diseases in various crop species. In soybean, PSP1 reduced the symptomatology by 70% of Corynespora cassiicola, etiological agent of the target spot. This protection effect was similar to the commercial inducer BION 500 WG based on BTH, and both products were shown to induce an oxidative burst and up-regulated PR1-gene expression in soybean. Furthermore, a double PSP1-treatment on greenhouse-grown sugarcane plants provided protection against bacterial red stripe disease caused by Acidovorax avenae and a double foliar application of PSP1 on field-grown wheat plants significantly increased resistance against Fusarium graminearum, causal agent of head blight disease, manifested mainly in an increased seed germination rate. In summary, these disease protection studies demonstrated an effective control against both bacterial and fungal pathogens in both monocot and dicot crop species, which together with its low production cost, effectiveness at low concentrations, long shelf-life, tolerance to high temperatures, harmlessness to non-target organisms and simple handling and application, make PSP1 a very promising candidate for effective and sustainable disease management in many crop species.

11.
Front Plant Sci ; 9: 763, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946326

RESUMO

Currently, fungicide application in soybean production accounts for an important amount of global pesticide use, and it is therefore most desirable to find new healthier and more environmental friendly alternatives for the phytosanitary management in this crop. In this study, we present convincing evidence for effective induction of disease protection by the agricultural biostimulant PSP1, a formulation based on the plant-defense eliciting activity of the fungal protease AsES (Acremonium strictum elicitor subtilisin), in multiple field trials in Argentina. PSP1 was shown to combine well with commercial spray adjuvants, an insecticide, a herbicide and fungicides used in Argentinian soybean production without losing any defense-inducing activity, indicating an easy and efficient adaptability to conventional soybean production and disease management in the region. Results from multiple soybean field trials conducted with different elite genotypes at several locations during two consecutive growing seasons, showed that PSP1 is able to induce an enhanced pathogen defense which effectively reduced late season disease (LSD) development in field-grown soybean. This defense response seems to be broad-range as disease development was clearly reduced for at least three different fungi causing LSDs in soybean (Septoria glycines, Cercospora kikuchii and Cercospora sojina). It was noteworthy that application of PSP1 in soybean alone gave a similar protection against fungal diseases as compared to the commercial fungicides included in the field trials and that PSP1 applied together with a fungicide at reproductive stages enhanced disease protection and significantly increased grain yields. PSP1 is the first example of an elicitor-based strategy in order to efficiently control multiple fungal diseases under field conditions in the soybean crop. These results show the feasibility of using induced resistance products as complements or even full-good replacements to currently used chemical pesticides, fulfilling a role as important components of a more sustainable crop disease management system.

12.
FEBS Open Bio ; 8(2): 211-218, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29435411

RESUMO

Plant secondary metabolism produces a variety of tannins that have a wide range of biological activities, including activation of plant defenses and antimicrobial, anti-inflammatory and antitumoral effects. The ellagitannin HeT (1-O-galloyl-2,3;4,6-bis-hexahydroxydiphenoyl-ß-d-glucopyranose) from strawberry leaves elicits a strong plant defense response, and exhibits antimicrobial activity associated to the inhibition of the oxygen consumption, but its mechanism of action is unknown. In this paper we investigate the influence of HeT on bacterial cell membrane integrity and its effect on respiration. A ß-galactosidase unmasking experiment showed that HeT does not disrupt membrane integrity. Raman spectroscopy analysis revealed that HeT strongly interacts with the cell membrane. Spectrochemical analysis indicated that HeT is oxidized in contact with bacterial cell membranes, and functional studies showed that HeT inhibits oxygen consumption, NADH and MTT reduction. These results provide evidence that HeT inhibits the respiratory chain.

13.
Plant Physiol Biochem ; 123: 400-405, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29306187

RESUMO

HeT (1-0-galloyl-2,3; 4,6-bis-hexahydroxydiphenoyl-ß-D-glucopyranose) is a penta-esterified ellagitannin obtained from strawberry leaves. Previous studies have shown that foliar application of HeT prior to inoculation with a virulent pathogen increases the resistance toward Colletotrichum acutatum in strawberry plants and to Xanthomonas citri subsp. citri in lemon plants. In this work we report that HeT induces an immediate leak of electrolytes, the hyperpolarization of the cellular membrane, a rapid Ca2+ influx to the cytoplasm during the first few seconds, which in turn modulates the accumulation of nitric oxide 5 min after treatment. At longer times, a biphasic accumulation of H2O2 with peaks at 2 and 5 h post treatment could be observed. In addition, HeT elicited the increase of alternative oxidase capacity during the first 12 h post treatment.


Assuntos
Cálcio/metabolismo , Fragaria/metabolismo , Peróxido de Hidrogênio/metabolismo , Taninos Hidrolisáveis/farmacologia , Óxido Nítrico/metabolismo , Sinalização do Cálcio , Eletrólitos/metabolismo , Fragaria/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/metabolismo
14.
Mol Plant Microbe Interact ; 31(1): 46-60, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28635519

RESUMO

The elicitor AsES (Acremonium strictum elicitor subtilisin) is a 34-kDa subtilisin-like protein secreted by the opportunistic fungus Acremonium strictum. AsES activates innate immunity and confers resistance against anthracnose and gray mold diseases in strawberry plants (Fragaria × ananassa Duch.) and the last disease also in Arabidopsis. In the present work, we show that, upon AsES recognition, a cascade of defense responses is activated, including: calcium influx, biphasic oxidative burst (O2⋅- and H2O2), hypersensitive cell-death response (HR), accumulation of autofluorescent compounds, cell-wall reinforcement with callose and lignin deposition, salicylic acid accumulation, and expression of defense-related genes, such as FaPR1, FaPG1, FaMYB30, FaRBOH-D, FaRBOH-F, FaCHI23, and FaFLS. All these responses occurred following a spatial and temporal program, first induced in infiltrated leaflets (local acquired resistance), spreading out to untreated lateral leaflets, and later, to distal leaves (systemic acquired resistance). After AsES treatment, macro-HR and macro-oxidative bursts were localized in infiltrated leaflets, while micro-HRs and microbursts occurred later in untreated leaves, being confined to a single cell or a cluster of a few epidermal cells that differentiated from the surrounding ones. The differentiated cells initiated a time-dependent series of physiological and anatomical changes, evolving to idioblasts accumulating H2O2 and autofluorescent compounds that blast, delivering its content into surrounding cells. This kind of systemic cell-death process in plants is described for the first time in response to a single elicitor. All data presented in this study suggest that AsES has the potential to activate a wide spectrum of biochemical and molecular defense responses in F. ananassa that may explain the induced protection toward pathogens of opposite lifestyle, like hemibiotrophic and necrotrophic fungi.


Assuntos
Acremonium/fisiologia , Resistência à Doença , Fragaria/imunologia , Fragaria/microbiologia , Proteínas Fúngicas/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Explosão Respiratória , Subtilisina/metabolismo , Morte Celular/genética , Parede Celular/metabolismo , Fluorescência , Fragaria/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Lignina/metabolismo , Necrose , Moléculas com Motivos Associados a Patógenos/metabolismo , Doenças das Plantas/genética , Folhas de Planta/microbiologia , Ácido Salicílico/metabolismo
15.
Plant Mol Biol ; 93(6): 607-621, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28155188

RESUMO

Transgenic expression of the pepper Bs2 gene confers resistance to Xanthomonas campestris pv. vesicatoria (Xcv) pathogenic strains which contain the avrBs2 avirulence gene in susceptible pepper and tomato varieties. The avrBs2 gene is highly conserved among members of the Xanthomonas genus, and the avrBs2 of Xcv shares 96% homology with the avrBs2 of Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker disease. A previous study showed that the transient expression of pepper Bs2 in lemon leaves reduced canker formation and induced plant defence mechanisms. In this work, the effect of the stable expression of Bs2 gene on citrus canker resistance was evaluated in transgenic plants of Citrus sinensis cv. Pineapple. Interestingly, Agrobacterium-mediated transformation of epicotyls was unsuccessful when a constitutive promoter (2× CaMV 35S) was used in the plasmid construction, but seven transgenic lines were obtained with a genetic construction harbouring Bs2 under the control of a pathogen-inducible promoter, from glutathione S-transferase gene from potato. A reduction of disease symptoms of up to 70% was observed in transgenic lines expressing Bs2 with respect to non-transformed control plants. This reduction was directly dependent on the Xcc avrBs2 gene since no effect was observed when a mutant strain of Xcc with a disruption in avrBs2 gene was used for inoculations. Additionally, a canker symptom reduction was correlated with levels of the Bs2 expression in transgenic plants, as assessed by real-time qPCR, and accompanied by the production of reactive oxygen species. These results indicate that the pepper Bs2 resistance gene is also functional in a family other than the Solanaceae, and could be considered for canker control.


Assuntos
Capsicum/genética , Citrus sinensis/genética , Citrus sinensis/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas campestris/patogenicidade , Agrobacterium tumefaciens/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Brotos de Planta/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transformação Genética
16.
Mol Plant Pathol ; 18(9): 1267-1281, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27647752

RESUMO

Xanthomonas citri ssp. citri (X. citri) is the causal agent of Asiatic citrus canker, a disease that seriously affects most commercially important Citrus species worldwide. We have identified previously a natural variant, X. citri AT , that triggers a host-specific defence response in Citrus limon. However, the mechanisms involved in this canker disease resistance are unknown. In this work, the defence response induced by X. citri AT was assessed by transcriptomic, physiological and ultrastructural analyses, and the effects on bacterial biofilm formation were monitored in parallel. We show that X. citri AT triggers a hypersensitive response associated with the interference of biofilm development and arrest of bacterial growth in C. limon. This plant response involves an extensive transcriptional reprogramming, setting in motion cell wall reinforcement, the oxidative burst and the accumulation of salicylic acid (SA) and phenolic compounds. Ultrastructural analyses revealed subcellular changes involving the activation of autophagy-associated vacuolar processes. Our findings show the activation of SA-dependent defence in response to X. citri AT and suggest a coordinated regulation between the SA and flavonoid pathways, which is associated with autophagy mechanisms that control pathogen invasion in C. limon. Furthermore, this defence response protects C. limon plants from disease on subsequent challenges by pathogenic X. citri. This knowledge will allow the rational exploitation of the plant immune system as a biotechnological approach for the management of the disease.


Assuntos
Citrus/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/patogenicidade , Autofagia/fisiologia , Biofilmes , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal/fisiologia , Ácido Salicílico/metabolismo
17.
BMC Plant Biol ; 16(1): 142, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342657

RESUMO

BACKGROUND: Molecular markers associated with relevant agronomic traits could significantly reduce the time and cost involved in developing new sugarcane varieties. Previous sugarcane genome-wide association analyses (GWAS) have found few molecular markers associated with relevant traits at plant-cane stage. The aim of this study was to establish an appropriate GWAS to find molecular markers associated with yield related traits consistent across harvesting seasons in a breeding population. Sugarcane clones were genotyped with DArT (Diversity Array Technology) and TRAP (Target Region Amplified Polymorphism) markers, and evaluated for cane yield (CY) and sugar content (SC) at two locations during three successive crop cycles. GWAS mapping was applied within a novel mixed-model framework accounting for population structure with Principal Component Analysis scores as random component. RESULTS: A total of 43 markers significantly associated with CY in plant-cane, 42 in first ratoon, and 41 in second ratoon were detected. Out of these markers, 20 were associated with CY in 2 years. Additionally, 38 significant associations for SC were detected in plant-cane, 34 in first ratoon, and 47 in second ratoon. For SC, one marker-trait association was found significant for the 3 years of the study, while twelve markers presented association for 2 years. In the multi-QTL model several markers with large allelic substitution effect were found. Sequences of four DArT markers showed high similitude and e-value with coding sequences of Sorghum bicolor, confirming the high gene microlinearity between sorghum and sugarcane. CONCLUSIONS: In contrast with other sugarcane GWAS studies reported earlier, the novel methodology to analyze multi-QTLs through successive crop cycles used in the present study allowed us to find several markers associated with relevant traits. Combining existing phenotypic trial data and genotypic DArT and TRAP marker characterizations within a GWAS approach including population structure as random covariates may prove to be highly successful. Moreover, sequences of DArT marker associated with the traits of interest were aligned in chromosomal regions where sorghum QTLs has previously been reported. This approach could be a valuable tool to assist the improvement of sugarcane and better supply sugarcane demand that has been projected for the upcoming decades.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Saccharum/genética , Biomassa , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Desequilíbrio de Ligação/genética
18.
Electron. j. biotechnol ; 18(6): 439-444, Nov. 2015. ilus, graf, mapas
Artigo em Inglês | LILACS | ID: lil-772288

RESUMO

Background Asian soybean rust (SBR) caused by Phakopsora pachyrhizi Syd. & Syd., is one of the main diseases affecting soybean and has been reported as one of the most economically important fungal pathogens worldwide. Knowledge of the genetic diversity of this fungus should be considered when developing resistance breeding strategies. We aimed to analyze the genetic diversity of P. pachyrhizi combining simple sampling with a powerful and reproducible molecular technique. Results We employed Amplified Fragment Length Polymorphism (AFLP) technique for the amplification of P. pachyrhizi DNA extracted from naturally SBR-infected plants from 23 production fields. From a total of 1919 markers obtained, 77% were polymorphic. The high percentage of polymorphism and the Nei's genetic diversity coefficient (0.22) indicated high pathogen diversity. Analysis of molecular variance showed higher genetic variation within countries than among them. Temporal analysis showed a higher genetic variation within a year than between years. Cluster, phylogenetic and principal co-ordinate analysis showed that samples group by year of collection and then by country sampled. Conclusions The study proposed combining a simple collection of urediniospore with a subsequent analysis by AFLP was useful to examine the molecular polymorphism of samples of P. pachyrhizi collected and might have a significant contribution to the knowledge of its genetic diversity. Also, AFLP analysis is an important and potent molecular tool for the study of genetic diversity and could be useful to carry out wider genetic diversity studies.


Assuntos
Doenças das Plantas , Variação Genética , Marcadores Genéticos , Phakopsora pachyrhizi/genética , Glycine max , Reação em Cadeia da Polimerase , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados
19.
AMB Express ; 5: 15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852992

RESUMO

As a strategy to find efficient lignocellulose degrading enzymes/microorganisms for sugarcane biomass pretreatment purposes, 118 culturable bacterial strains were isolated from intestines of sugarcane-fed larvae of the moth Diatraea saccharalis. All strains were tested for cellulolytic activity using soluble carboxymethyl cellulose (CMC) degrading assays or by growing bacteria on sugarcane biomass as sole carbon sources. Out of the 118 strains isolated thirty eight were found to possess cellulose degrading activity and phylogenetic studies of the 16S rDNA sequence revealed that all cellulolytic strains belonged to the phyla γ-Proteobacteria, Actinobacteria and Firmicutes. Within the three phyla, species belonging to five different genera were identified (Klebsiella, Stenotrophomonas, Microbacterium, Bacillus and Enterococcus). Bacterial growth on sugarcane biomass as well as extracellular endo-glucanase activity induced on soluble cellulose was found to be highest in species belonging to genera Bacillus and Klebsiella. Good cellulolytic activity correlated with high extracellular protein concentrations. In addition, scanning microscopy studies revealed attachment of cellulolytic strains to different sugarcane substrates. The results of this study indicate the possibility to find efficient cellulose degrading enzymes and microorganisms from intestines of insect larvae feeding on sugarcane and their possible application in industrial processing of sugarcane biomass such as second generation biofuel production.

20.
Environ Microbiol ; 17(11): 4164-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25346091

RESUMO

Xanthomonas citri subsp. citri (Xcc) is the causal agent of citrus canker. Biofilm formation on citrus leaves plays an important role in epiphytic survival of Xcc. Biofilm formation is affected by transposon insertion in XAC3733, which encodes a transcriptional activator of the NtrC family, not linked to a gene encoding a sensor protein, thus could be considered as an 'orphan' regulator whose function is poorly understood in Xanthomonas spp. Here we show that mutation of XAC3733 (named xbmR) resulted in impaired structural development of the Xcc biofilm, loss of chemotaxis and reduced virulence in grapefruit plants. All defective phenotypes were restored to wild-type levels by the introduction of PA2567 from Pseudomonas aeruginosa, which encodes a phosphodiesterase active in the degradation of cyclic diguanosine monophosphate (c-di-GMP). A knockout of xbmR led to a substantial downregulation of fliA that encodes a σ(28) transcription factor, as well as fliC and XAC0350 which are potential member of the σ(28) regulon. XAC0350 encodes an HD-GYP domain c-di-GMP phosphodiesterase. These findings suggest that XbmR is a key regulator of flagellar-dependent motility and chemotaxis exerting its action through a regulatory pathway that involves FliA and c-di-GMP.


Assuntos
Biofilmes/crescimento & desenvolvimento , Quimiotaxia/genética , Flagelos/genética , Fatores de Transcrição/genética , Xanthomonas/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Citrus/microbiologia , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Elementos de DNA Transponíveis/genética , Flagelos/metabolismo , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Mutação/genética , Diester Fosfórico Hidrolases/genética , Doenças das Plantas/genética , Folhas de Planta/metabolismo , Pseudomonas aeruginosa/genética , Alinhamento de Sequência , Fator sigma/biossíntese , Fator sigma/genética , Virulência/genética , Xanthomonas/genética , Xanthomonas/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...