Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 450, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605093

RESUMO

Antarctic silverfish Pleuragramma antarcticum is the most abundant pelagic fish in the High Antarctic shelf waters of the Southern Ocean, where it plays a pivotal role in the trophic web as the major link between lower and higher trophic levels. Despite the ecological importance of this species, knowledge about its role in the biogeochemical cycle is poor. We determine the seasonal contribution of Antarctic silverfish to carbon flux in terms of faeces and eggs, from samples collected in the Ross Sea. We find that eggs and faeces production generate a flux accounting for 41% of annual POC flux and that the variability of this flux is modulated by spawning strategy. This study shows the important role of this organism as a vector for carbon flux. Since Antarctic silverfish are strongly dependent on sea-ice, they might be especially sensitive to climatic changes. Our results suggest that a potential decrease in the biomass of this organism is likely to impact marine biogeochemical cycles, and this should be factored in when assessing Southern Ocean carbon budget.


Assuntos
Carbono , Perciformes , Animais , Baías , Peixes
3.
Sci Rep ; 13(1): 3873, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890202

RESUMO

Antarctic Bottom Water (AABW) stores heat and gases over decades to centuries after contact with the atmosphere during formation on the Antarctic shelf and subsequent flow into the global deep ocean. Dense water from the western Ross Sea, a primary source of AABW, shows changes in water properties and volume over the last few decades. Here we show, using multiple years of moored observations, that the density and speed of the outflow are consistent with a release from the Drygalski Trough controlled by the density in Terra Nova Bay (the "accelerator") and the tidal mixing (the "brake"). We suggest tides create two peaks in density and flow each year at the equinoxes and could cause changes of ~ 30% in the flow and density over the 18.6-year lunar nodal tide. Based on our dynamic model, we find tides can explain much of the decadal variability in the outflow with longer-term changes likely driven by the density in Terra Nova Bay.

4.
Sci Rep ; 11(1): 2246, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500521

RESUMO

Approximately 25% of Antarctic Bottom Water has its origin as dense water exiting the western Ross Sea, but little is known about what controls the release of dense water plumes from the Drygalski Trough. We deployed two moorings on the slope to investigate the water properties of the bottom water exiting the region at Cape Adare. Salinity of the bottom water has increased in 2018 from the previous measurements in 2008-2010, consistent with the observed salinity increase in the Ross Sea. We find High Salinity Shelf Water from the Drygalski Trough contributes to two pulses of dense water at Cape Adare. The timing and magnitude of the pulses is largely explained by an inverse relationship with the tidal velocity in the Ross Sea. We suggest that the diurnal and low frequency tides in the western Ross Sea may control the magnitude and timing of the dense water outflow.

5.
Nat Commun ; 10(1): 5441, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784513

RESUMO

Antarctic Bottom Water (AABW) supplies the lower limb of the global overturning circulation and ventilates the abyssal ocean. In recent decades, AABW has warmed, freshened and reduced in volume. Ross Sea Bottom Water (RSBW), the second largest source of AABW, has experienced the largest freshening. Here we use 23 years of summer measurements to document temporal variability in the salinity of the Ross Sea High Salinity Shelf Water (HSSW), a precursor to RSBW. HSSW salinity decreased between 1995 and 2014, consistent with freshening observed between 1958 and 2008. However, HSSW salinity rebounded sharply after 2014, with values in 2018 similar to those observed in the mid-late 1990s. Near-synchronous interannual fluctuations in salinity observed at five locations on the continental shelf suggest that upstream preconditioning and large-scale forcing influence HSSW salinity. The rate, magnitude and duration of the recent salinity increase are unusual in the context of the (sparse) observational record.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...