Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 63: 116688, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35430536

RESUMO

DNA-Encoded Libraries (DEL) represent a promising hit finding strategy for drug discovery. Nonetheless, the available DNA-compatible chemistry remains of limited scope. Nucleophilic aromatic substitution (SNAr) has been extensively used in DEL synthesis but has generally been restricted to highly activated (hetero)arenes. Herein, we report an optimised procedure for SNAr reactions through the use of factorial experimental design (FED) on-DNA using 15% THF as a co-solvent. This method gave conversions of >95% for pyridine and pyrazine scaffolds for 36 secondary cyclic amines. This analysis provides a new DNA-compatible SNAr reaction to produce high yielding libraries. The scope of this reaction on other amines is described. This work identifies challenges for the further development for DNA-compatible SNAr reactions. 2009 Elsevier Ltd. All rights reserved.


Assuntos
Aminas , DNA , Descoberta de Drogas
2.
Chem Sci ; 12(27): 9475-9484, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34349922

RESUMO

DNA encoded libraries (DELs) represent powerful new technology for finding small molecule ligands for proteins and are increasingly being applied to hit finding in medicinal chemistry. Crucial to the synthesis of high quality DELs is the identification of chemical reactions for their assembly that proceed with very high conversion across a range of different substrates, under conditions compatible with DNA-tagged substrates. Many current chemistries used in DEL synthesis do not meet this requirement, resulting in libraries of low fidelity. Amide couplings are the most commonly used reaction in synthesis of screening libraries and also in DELs. The ability to carry out highly efficient, widely applicable amide couplings in DEL synthesis would therefore be highly desirable. We report a method for amide coupling using micelle forming surfactants, promoted by a modified linker, that is broadly applicable across a wide range of substrates. Most significantly, this works exceptionally well for coupling of DNA-conjugated carboxylic acids (N-to-C) with amines in solution, a procedure that is currently very inefficient. The optimisation of separate procedures for coupling of DNA-conjugated acids and amines by reagent screening and statistically driven optimisation is described. The generality of the method is illustrated by the application to a wide range of examples with unprecedented levels of conversion. The utility of the (N-to-C) coupling of DNA-conjugated acids in DEL synthesis is illustrated by the three cycle synthesis of a fully DNA-encoded compound by two cycles of coupling of an aminoester, with intermediate ester hydrolysis, followed by capping with an amine. This methodology will be of great utility in the synthesis of high fidelity DELs.

3.
Bioorg Med Chem ; 43: 116273, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34147943

RESUMO

DNA-encoded libraries (DELs) are becoming an established technology for finding ligands for protein targets. We have abstracted and analysed libraries from the literature to assess the synthesis strategy, selections of reactions and monomers and their propensity to reveal hits. DELs have led to hit compounds across a range of diverse protein classes. The range of reactions and monomers utilised has been relatively limited and the hits are often higher in molecular weight than might be considered ideal. Considerations for future library designs with reference to chemical diversity and lead-like properties are discussed.


Assuntos
DNA/química , Desenho de Fármacos , Bibliotecas de Moléculas Pequenas/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...