Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13002, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844510

RESUMO

Monitoring sandy shoreline evolution from years to decades is critical to understand the past and predict the future of our coasts. Optical satellite imagery can now infer such datasets globally, but sometimes with large uncertainties, poor spatial resolution, and thus debatable outcomes. Here we validate and analyse satellite-derived-shoreline positions (1984-2021) along the Atlantic coast of Europe using a moving-averaged approach based on coastline characteristics, indicating conservative uncertainties of long-term trends around 0.4 m/year and a potential bias towards accretion. We show that west-facing open coasts are more prone to long-term erosion, whereas relatively closed coasts favor accretion, although most of computed trends fall within the range of uncertainty. Interannual shoreline variability is influenced by regionally dominant atmospheric climate indices. Quasi-straight open coastlines typically show the strongest and more alongshore-uniform links, while embayed coastlines, especially those not exposed to the dominant wave climate, show weaker and more variable correlation with the indices. Our results provide a spatial continuum between previous local-scale studies, while emphasizing the necessity to further reduce satellite-derived shoreline trend uncertainties. They also call for applications based on a relevant averaging approach and the inclusion of coastal setting parameters to unravel the forcing-response spectrum of sandy shorelines globally.

3.
Inj Prev ; 28(1): 16-22, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33692084

RESUMO

OBJECTIVE: To predict the coast-wide risk of drowning along the surf beaches of Gironde, southwestern France. METHODS: Data on rescues and drownings were collected from the Medical Emergency Center of Gironde (SAMU 33). Seasonality, holidays, weekends, weather and metocean conditions were considered potentially predictive. Logistic regression models were fitted with data from 2011 to 2013 and used to predict 2015-2017 events employing weather and ocean forecasts. RESULTS: Air temperature, wave parameters, seasonality and holidays were associated with drownings. Prospective validation was performed on 617 days, covering 232 events (rescues and drownings) reported on 104 different days. The area under the curve (AUC) of the daily risk prediction model (combined with 3-day forecasts) was 0.82 (95% CI 0.79 to 0.86). The AUC of the 3-hour step model was 0.85 (95% CI 0.81 to 0.88). CONCLUSIONS: Drowning events along the Gironde surf coast can be anticipated up to 3 days in advance. Preventative messages and rescue preparations could be increased as the forecast risk increased, especially during the off-peak season, when the number of available rescuers is low.


Assuntos
Afogamento , Esportes , Afogamento/epidemiologia , Afogamento/prevenção & controle , Férias e Feriados , Humanos , Estações do Ano , Tempo (Meteorologia)
4.
Sci Total Environ ; 782: 146813, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848855

RESUMO

In northern Europe, coastal dune remobilization by restoring natural processes is considered by some to maintain the coastal dune in chronically eroding sectors by migrating landward and to restore dune ecology. In wet climatic contexts, this nature-based solution has been shown to induce an increase in both sand bare areas and vegetation diversity. However, it has never been tested in the coastal dunes of southern Europe with a drier climate and, thus, more stressful conditions, where disturbance may inversely decrease vegetation diversity. An original experiment was set up in 2018 on a 4-km stretch of coastal dune in southwest France where Experimental Notches (EN) were excavated in the incipient foredune, referred to as West Experimental Notch (WEN), and in the established foredune, referred as to East Experimental Notch (EEN). Morphological and ecological responses were monitored using UAV photogrammetry and vegetation sampling along transects during two years with contrasted winter storm conditions. During the first winter characterized by calm wind conditions, a rapid filling of the WENs and the initiation of deposition lobes landward of the EENs were observed. Stronger winds during the second winter led to the development of deposition lobes of the EENs, increasing both their volume, up to 6 times, and their cross-shore elongation. The increase in disturbance induced by the notches had a significant impact on vegetation. New sandy bares were colonized by pioneer species leading to an increase in species richness and rejuvenation, in particular landward of the EENs. Although longer-term monitoring is required to draw conclusions, these results suggest that the excavation of foredune notches are able to re-establish an ecomorphological dynamic in the dunes of southwest France on the time scales of years, promoting landward sand transport and, thus, the foredune landward translation, while not threatening diversity. Such approach may become a relevant adaptation strategy to sea level rise and increased erosion in this region of the world.

5.
Sci Data ; 7(1): 410, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219249

RESUMO

Sandy beaches are highly dynamic environments buffering shores from storm waves and providing outstanding recreational services. Long-term beach monitoring programs are critical to test and improve shoreline, beach morphodynamics and storm impact models. However, these programs are relatively rare and mostly restricted to microtidal alongshore-uniform beaches. The present 16-year dataset contains 326 digital elevation models and their over 1.635 × 106 individual sand level measurements at the high-energy meso-macrotidal rip-channelled Truc Vert beach, southwest France. Monthly to bimonthly topographic surveys, which coverage progressively extended from 300 m to over 2000 m to describe the alongshore-variable changes, are completed by daily topographic surveys acquired during a 5-week field campaign. The dataset captures daily beach response at the scale of a storm to three large cycles of interannual variability, through the impact of the most energetic winter since at least 75 years and prominent seasonal erosion/recovery cycles. The data set is supplemented with high-frequency time series of offshore wave and astronomical tide data to facilitate its future use in beach research.

6.
Sci Rep ; 10(1): 2137, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034246

RESUMO

Beaches around the world continuously adjust to daily and seasonal changes in wave and tide conditions, which are themselves changing over longer time-scales. Different approaches to predict multi-year shoreline evolution have been implemented; however, robust and reliable predictions of shoreline evolution are still problematic even in short-term scenarios (shorter than decadal). Here we show results of a modelling competition, where 19 numerical models (a mix of established shoreline models and machine learning techniques) were tested using data collected for Tairua beach, New Zealand with 18 years of daily averaged alongshore shoreline position and beach rotation (orientation) data obtained from a camera system. In general, traditional shoreline models and machine learning techniques were able to reproduce shoreline changes during the calibration period (1999-2014) for normal conditions but some of the model struggled to predict extreme and fast oscillations. During the forecast period (unseen data, 2014-2017), both approaches showed a decrease in models' capability to predict the shoreline position. This was more evident for some of the machine learning algorithms. A model ensemble performed better than individual models and enables assessment of uncertainties in model architecture. Research-coordinated approaches (e.g., modelling competitions) can fuel advances in predictive capabilities and provide a forum for the discussion about the advantages/disadvantages of available models.

7.
Inj Epidemiol ; 6: 17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31245266

RESUMO

BACKGROUND: Drowning is the third cause of non-intentional injury death worldwide. Beaches of Gironde, in southwestern France, are exposed to strong environmental conditions, leading to rip currents and shore breaks. Bathing season usually lasts from April to October and is supervised from June till mid-September. The objective of this study was to study the characteristics of drowning victims along Gironde surf beaches and to identify peculiarities compared to national figures. METHODS: All calls originating from beaches to the emergency call center of Gironde from 2011 to 2016 were analyzed. Patient data, filled by a physician based on information given by pre-hospital care team (lifeguards, paramedics or emergency physicians), were extracted from the emergency call center database. We used Szpilman classification (0 = rescue to 6 = cardiac arrest) to assess severity. Rescues are patients without respiratory impairment who needed lifeguards or helicopter intervention. We compared our findings with national studies carried every three years (2012 and 2015). RESULTS: We analyzed 5680 calls from beaches and included 4398, 576 of which were rescued from the water, including 352 without respiratory impairment (stage 0). Among drownings, 155 had cough only (stage 1), 26 pulmonary rales (stage 2), 9 pulmonary edema (stage 3) and 1 had pulmonary edema with hypotension (stage 4). Five rescued people were in respiratory arrest and 28 were in cardiac arrest. 77.5% were bathers, others were mainly surfers or body-boarders. Drowning victims median age was 24 (quartiles: 17-40), and sex-ratio was 1.44 Male/Female. Men were significantly older than women (34 vs. 26 years old), and severity from stage 1 to 4 was positively associated with age. Compared to national data, Gironde drownings had a higher proportion of 15-44 year-old victims, and the case-fatality was lower in Gironde (11.5%) than at the national level (27.4%, p < 0.001). CONCLUSION: Along Gironde coast, drowning is rarely severe, concerns mostly young men; the age distribution could explain the different case-fatality. Further study is needed to identify environmental predictors of drowning.

8.
Sci Rep ; 9(1): 6186, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30971705

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

9.
Sci Rep ; 9(1): 42, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631107

RESUMO

Sandy shorelines are constantly evolving, threatening frequently human assets such as buildings or transport infrastructure. In these environments, sea-level rise will exacerbate coastal erosion to an amount which remains uncertain. Sandy shoreline change projections inherit the uncertainties of future mean sea-level changes, of vertical ground motions, and of other natural and anthropogenic processes affecting shoreline change variability and trends. Furthermore, the erosive impact of sea-level rise itself can be quantified using two fundamentally different models. Here, we show that this latter source of uncertainty, which has been little quantified so far, can account for 20 to 40% of the variance of shoreline projections by 2100 and beyond. This is demonstrated for four contrasting sandy beaches that are relatively unaffected by human interventions in southwestern France, where a variance-based global sensitivity analysis of shoreline projection uncertainties can be performed owing to previous observations of beach profile and shoreline changes. This means that sustained coastal observations and efforts to develop sea-level rise impact models are needed to understand and eventually reduce uncertainties of shoreline change projections, in order to ultimately support coastal land-use planning and adaptation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...