Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Lancet Microbe ; 5(7): 645-654, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729196

RESUMO

BACKGROUND: Protection afforded by inactivated influenza vaccines can theoretically be improved by inducing T-cell responses to conserved internal influenza A antigens. We assessed whether, in an influenza controlled human infection challenge, susceptible individuals receiving a vaccine boosting T-cell responses would exhibit lower viral load and decreased symptoms compared with placebo recipients. METHODS: In this single centre, randomised, double-blind phase 2 study, healthy adult (aged 18-55 years) volunteers with microneutralisation titres of less than 20 to the influenza A(H3N2) challenge strain were enrolled at an SGS quarantine facility in Antwerp, Belgium. Participants were randomly assigned double-blind using a permuted-block list with a 3:2 allocation ratio to receive 0·5 mL intramuscular injections of modified vaccinia Ankara (MVA) expressing H3N2 nucleoprotein (NP) and matrix protein 1 (M1) at 1·5 × 108 plaque forming units (4·3 × 108 50% tissue culture infectious dose [TCID50]; MVA-NP+M1 group) or saline placebo (placebo group). At least 6 weeks later, participants were challenged intranasally with 0·5 mL of a 1 × 106 TCID50/mL dose of influenza A/Belgium/4217/2015 (H3N2). Nasal swabs were collected twice daily from day 2 until day 11 for viral PCR, and symptoms of influenza were recorded from day 2 until day 11. The primary outcome was to determine the efficacy of MVA-NP+M1 vaccine to reduce the degree of nasopharyngeal viral shedding as measured by the cumulative viral area under the curve using a log-transformed quantitative PCR. This study is registered with ClinicalTrials.gov, NCT03883113. FINDINGS: Between May 2 and Oct 24, 2019, 145 volunteers were enrolled and randomly assigned to the MVA-NP+M1 group (n=87) or the placebo group (n=58). Of these, 118 volunteers entered the challenge period (71 in the MVA-NP+M1 group and 47 in the placebo group) and 117 participants completed the study (71 in the MVA-NP+M1 group and 46 in the placebo group). 78 (54%) of the 145 volunteers were female and 67 (46%) were male. The primary outcome, overall viral load as determined by quantitative PCR, did not show a statistically significant difference between the MVA-NP+M1 (mean 649·7 [95% CI 552·7-746·7) and placebo groups (mean 726·1 [604·0-848·2]; p=0·17). All reported treatment emergent adverse events (TEAEs; 11 in the vaccination phase and 51 in the challenge phase) were grade 1 and 2, except for two grade 3 TEAEs in the placebo group in the challenge phase. A grade 4 second trimester fetal death, considered possibly related to the MVA-NP+M1 vaccination, and an acute psychosis reported in a placebo participant during the challenge phase were reported. INTERPRETATION: The use of an MVA vaccine to expand CD4+ or CD8+ T cells to conserved influenza A antigens in peripheral blood did not affect nasopharyngeal viral load in an influenza H3N2 challenge model in seronegative, healthy adults. FUNDING: Department of Health and Human Services; Administration for Strategic Preparedness and Response; Biomedical Advanced Research and Development Authority; and Barinthus Biotherapeutics.


Assuntos
Linfócitos T CD8-Positivos , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza , Influenza Humana , Carga Viral , Humanos , Adulto , Bélgica/epidemiologia , Método Duplo-Cego , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Feminino , Masculino , Adulto Jovem , Pessoa de Meia-Idade , Linfócitos T CD8-Positivos/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Adolescente , Proteínas da Matriz Viral/imunologia , Proteínas do Core Viral/imunologia , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Proteínas do Nucleocapsídeo/imunologia , Anticorpos Antivirais/sangue , Imunidade Celular
2.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425926

RESUMO

Variations in DNA methylation patterns in human tissues have been linked to various environmental exposures and infections. Here, we identified the DNA methylation signatures associated with multiple exposures in nine major immune cell types derived from peripheral blood mononuclear cells (PBMCs) at single-cell resolution. We performed methylome sequencing on 111,180 immune cells obtained from 112 individuals who were exposed to different viruses, bacteria, or chemicals. Our analysis revealed 790,662 differentially methylated regions (DMRs) associated with these exposures, which are mostly individual CpG sites. Additionally, we integrated methylation and ATAC-seq data from same samples and found strong correlations between the two modalities. However, the epigenomic remodeling in these two modalities are complementary. Finally, we identified the minimum set of DMRs that can predict exposures. Overall, our study provides the first comprehensive dataset of single immune cell methylation profiles, along with unique methylation biomarkers for various biological and chemical exposures.

3.
Sci Transl Med ; 15(692): eade9078, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37075127

RESUMO

The best assay or marker to define mRNA-1273 vaccine-induced antibodies as a correlate of protection (CoP) is unclear. In the COVE trial, participants received two doses of the mRNA-1273 COVID-19 vaccine or placebo. We previously assessed IgG binding antibodies to the spike protein (spike IgG) or receptor binding domain (RBD IgG) and pseudovirus neutralizing antibody 50 or 80% inhibitory dilution titer measured on day 29 or day 57, as correlates of risk (CoRs) and CoPs against symptomatic COVID-19 over 4 months after dose. Here, we assessed a new marker, live virus 50% microneutralization titer (LV-MN50), and compared and combined markers in multivariable analyses. LV-MN50 was an inverse CoR, with a hazard ratio of 0.39 (95% confidence interval, 0.19 to 0.83) at day 29 and 0.51 (95% confidence interval, 0.25 to 1.04) at day 57 per 10-fold increase. In multivariable analyses, pseudovirus neutralization titers and anti-spike binding antibodies performed best as CoRs; combining antibody markers did not improve correlates. Pseudovirus neutralization titer was the strongest independent correlate in a multivariable model. Overall, these results supported pseudovirus neutralizing and binding antibody assays as CoRs and CoPs, with the live virus assay as a weaker correlate in this sample set. Day 29 markers performed as well as day 57 markers as CoPs, which could accelerate immunogenicity and immunobridging studies.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , COVID-19 , Humanos , Eficácia de Vacinas , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
4.
NPJ Vaccines ; 8(1): 36, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36899062

RESUMO

In the phase 3 trial of the AZD1222 (ChAdOx1 nCoV-19) vaccine conducted in the U.S., Chile, and Peru, anti-spike binding IgG concentration (spike IgG) and pseudovirus 50% neutralizing antibody titer (nAb ID50) measured four weeks after two doses were assessed as correlates of risk and protection against PCR-confirmed symptomatic SARS-CoV-2 infection (COVID-19). These analyses of SARS-CoV-2 negative participants were based on case-cohort sampling of vaccine recipients (33 COVID-19 cases by 4 months post dose two, 463 non-cases). The adjusted hazard ratio of COVID-19 was 0.32 (95% CI: 0.14, 0.76) per 10-fold increase in spike IgG concentration and 0.28 (0.10, 0.77) per 10-fold increase in nAb ID50 titer. At nAb ID50 below the limit of detection (< 2.612 IU50/ml), 10, 100, and 270 IU50/ml, vaccine efficacy was -5.8% (-651%, 75.6%), 64.9% (56.4%, 86.9%), 90.0% (55.8%, 97.6%) and 94.2% (69.4%, 99.1%). These findings provide further evidence towards defining an immune marker correlate of protection to help guide regulatory/approval decisions for COVID-19 vaccines.

6.
Nat Commun ; 14(1): 331, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658109

RESUMO

In the PREVENT-19 phase 3 trial of the NVX-CoV2373 vaccine (NCT04611802), anti-spike binding IgG concentration (spike IgG), anti-RBD binding IgG concentration (RBD IgG), and pseudovirus 50% neutralizing antibody titer (nAb ID50) measured two weeks post-dose two are assessed as correlates of risk and as correlates of protection against COVID-19. Analyses are conducted in the U.S. cohort of baseline SARS-CoV-2 negative per-protocol participants using a case-cohort design that measures the markers from all 12 vaccine recipient breakthrough COVID-19 cases starting 7 days post antibody measurement and from 639 vaccine recipient non-cases. All markers are inversely associated with COVID-19 risk and directly associated with vaccine efficacy. In vaccine recipients with nAb ID50 titers of 50, 100, and 7230 international units (IU50)/ml, vaccine efficacy estimates are 75.7% (49.8%, 93.2%), 81.7% (66.3%, 93.2%), and 96.8% (88.3%, 99.3%). The results support potential cross-vaccine platform applications of these markers for guiding decisions about vaccine approval and use.


Assuntos
COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunoglobulina G , SARS-CoV-2 , Eficácia de Vacinas , Ensaios Clínicos Fase III como Assunto
7.
Nat Microbiol ; 7(12): 1996-2010, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36357712

RESUMO

Measuring immune correlates of disease acquisition and protection in the context of a clinical trial is a prerequisite for improved vaccine design. We analysed binding and neutralizing antibody measurements 4 weeks post vaccination as correlates of risk of moderate to severe-critical COVID-19 through 83 d post vaccination in the phase 3, double-blind placebo-controlled phase of ENSEMBLE, an international randomized efficacy trial of a single dose of Ad26.COV2.S. We also evaluated correlates of protection in the trial cohort. Of the three antibody immune markers we measured, we found most support for 50% inhibitory dilution (ID50) neutralizing antibody titre as a correlate of risk and of protection. The outcome hazard ratio was 0.49 (95% confidence interval 0.29, 0.81; P = 0.006) per 10-fold increase in ID50; vaccine efficacy was 60% (43%, 72%) at non-quantifiable ID50 (<2.7 IU50 ml-1) and increased to 89% (78%, 96%) at ID50 = 96.3 IU50 ml-1. Comparison of the vaccine efficacy by ID50 titre curves for ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine and the COV002-UK trial of the AZD1222 vaccine supported the ID50 titre as a correlate of protection across trials and vaccine types.


Assuntos
Ad26COVS1 , COVID-19 , Humanos , COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Vacina de mRNA-1273 contra 2019-nCoV , Eficácia de Vacinas , Anticorpos Neutralizantes
8.
medRxiv ; 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35441174

RESUMO

Anti-spike IgG binding antibody, anti-receptor binding domain IgG antibody, and pseudovirus neutralizing antibody measurements four weeks post-vaccination were assessed as correlates of risk of moderate to severe-critical COVID-19 outcomes through 83 days post-vaccination and as correlates of protection following a single dose of Ad26.COV2.S COVID-19 vaccine in the placebo-controlled phase of ENSEMBLE, an international, randomized efficacy trial. Each marker had evidence as a correlate of risk and of protection, with strongest evidence for 50% inhibitory dilution (ID50) neutralizing antibody titer. The outcome hazard ratio was 0.49 (95% confidence interval 0.29, 0.81; p=0.006) per 10-fold increase in ID50; vaccine efficacy was 60% (43, 72%) at nonquantifiable ID50 (< 2.7 IU50/ml) and rose to 89% (78, 96%) at ID50 = 96.3 IU50/ml. Comparison of the vaccine efficacy by ID50 titer curves for ENSEMBLE-US, the COVE trial of the mRNA-1273 vaccine, and the COV002-UK trial of the AZD1222 vaccine supported consistency of the ID50 titer correlate of protection across trials and vaccine types.

9.
Science ; 375(6576): 43-50, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34812653

RESUMO

In the coronavirus efficacy (COVE) phase 3 clinical trial, vaccine recipients were assessed for neutralizing and binding antibodies as correlates of risk for COVID-19 disease and as correlates of protection. These immune markers were measured at the time of second vaccination and 4 weeks later, with values reported in standardized World Health Organization international units. All markers were inversely associated with COVID-19 risk and directly associated with vaccine efficacy. Vaccine recipients with postvaccination 50% neutralization titers 10, 100, and 1000 had estimated vaccine efficacies of 78% (95% confidence interval, 54 to 89%), 91% (87 to 94%), and 96% (94 to 98%), respectively. These results help define immune marker correlates of protection and may guide approval decisions for messenger RNA (mRNA) COVID-19 vaccines and other COVID-19 vaccines.


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Eficácia de Vacinas , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ensaios Clínicos Fase III como Assunto , Feminino , Humanos , Imunogenicidade da Vacina , Masculino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
10.
medRxiv ; 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34401888

RESUMO

BACKGROUND: In the Coronavirus Efficacy (COVE) trial, estimated mRNA-1273 vaccine efficacy against coronavirus disease-19 (COVID-19) was 94%. SARS-CoV-2 antibody measurements were assessed as correlates of COVID-19 risk and as correlates of protection. METHODS: Through case-cohort sampling, participants were selected for measurement of four serum antibody markers at Day 1 (first dose), Day 29 (second dose), and Day 57: IgG binding antibodies (bAbs) to Spike, bAbs to Spike receptor-binding domain (RBD), and 50% and 80% inhibitory dilution pseudovirus neutralizing antibody titers calibrated to the WHO International Standard (cID50 and cID80). Participants with no evidence of previous SARS-CoV-2 infection were included. Cox regression assessed in vaccine recipients the association of each Day 29 or 57 serologic marker with COVID-19 through 126 or 100 days of follow-up, respectively, adjusting for risk factors. RESULTS: Day 57 Spike IgG, RBD IgG, cID50, and cID80 neutralization levels were each inversely correlated with risk of COVID-19: hazard ratios 0.66 (95% CI 0.50, 0.88; p=0.005); 0.57 (0.40, 0.82; p=0.002); 0.42 (0.27, 0.65; p<0.001); 0.35 (0.20, 0.61; p<0.001) per 10-fold increase in marker level, respectively, multiplicity adjusted P-values 0.003-0.010. Results were similar for Day 29 markers (multiplicity adjusted P-values <0.001-0.003). For vaccine recipients with Day 57 reciprocal cID50 neutralization titers that were undetectable (<2.42), 100, or 1000, respectively, cumulative incidence of COVID-19 through 100 days post Day 57 was 0.030 (0.010, 0.093), 0.0056 (0.0039, 0.0080), and 0.0023 (0.0013, 0.0036). For vaccine recipients at these titer levels, respectively, vaccine efficacy was 50.8% (-51.2, 83.0%), 90.7% (86.7, 93.6%), and 96.1% (94.0, 97.8%). Causal mediation analysis estimated that the proportion of vaccine efficacy mediated through Day 29 cID50 titer was 68.5% (58.5, 78.4%). CONCLUSIONS: Binding and neutralizing antibodies correlated with COVID-19 risk and vaccine efficacy and likely have utility in predicting mRNA-1273 vaccine efficacy against COVID-19. TRIAL REGISTRATION NUMBER: COVE ClinicalTrials.gov number, NCT04470427.

11.
Sci Rep ; 6: 31458, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27530334

RESUMO

We have recently described a method, named PROFILER, for the identification of antigenic regions preferentially targeted by polyclonal antibody responses after vaccination. To test the ability of the technique to provide insights into the functional properties of monoclonal antibody (mAb) epitopes, we used here a well-characterized epitope of meningococcal factor H binding protein (fHbp), which is recognized by mAb 12C1. An fHbp library, engineered on a lambda phage vector enabling surface expression of polypeptides of widely different length, was subjected to massive parallel sequencing of the phage inserts after affinity selection with the 12C1 mAb. We detected dozens of unique antibody-selected sequences, the most enriched of which (designated as FrC) could largely recapitulate the ability of fHbp to bind mAb 12C1. Computational analysis of the cumulative enrichment of single amino acids in the antibody-selected fragments identified two overrepresented stretches of residues (H248-K254 and S140-G154), whose presence was subsequently found to be required for binding of FrC to mAb 12C1. Collectively, these results suggest that the PROFILER technology can rapidly and reliably identify, in the context of complex conformational epitopes, discrete "hot spots" with a crucial role in antigen-antibody interactions, thereby providing useful clues for the functional characterization of the epitope.


Assuntos
Anticorpos Monoclonais Murinos/química , Bacteriófago lambda/genética , Epitopos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biblioteca de Peptídeos , Animais , Camundongos
12.
PLoS One ; 11(6): e0157066, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336786

RESUMO

CD4+ T follicular helper cells (T(FH)) have been identified as the T-cell subset specialized in providing help to B cells for optimal activation and production of high affinity antibody. We recently demonstrated that the expansion of peripheral blood influenza-specific CD4(+)IL-21(+)ICOS1(+) T helper (T(H)) cells, three weeks after vaccination, associated with and predicted the rise of protective neutralizing antibodies to avian H5N1. In this study, healthy adults were vaccinated with plain seasonal trivalent inactivated influenza vaccine (TIIV), MF59(®)-adjuvanted TIIV (ATIIV), or saline placebo. Frequencies of circulating CD4(+) T(FH)1 ICOS(+) T(FH) cells and H1N1-specific CD4(+-)IL-21(+)ICOS(+) CXCR5(+) T(FH) and CXCR5(-) T(H) cell subsets were determined at various time points after vaccination and were then correlated with hemagglutination inhibition (HI) titers. All three CD4(+) T cell subsets expanded in response to TIIV and ATIIV, and peaked 7 days after vaccination. To demonstrate that these T(FH) cell subsets correlated with functional antibody titers, we defined an alternative endpoint metric, decorrelated HI (DHI), which removed any correlation between day 28/day 168 and day 0 HI titers, to control for the effect of preexisting immunity to influenza vaccine strains. The numbers of total circulating CD4(+)T(FH)1 ICOS(+) cells and of H1N1-specific CD4(+)IL-21(+)ICOS(+) CXCR5(+), measured at day 7, were significantly associated with day 28, and day 28 and 168 DHI titers, respectively. Altogether, our results show that CD4(+) T(FH) subsets may represent valuable biomarkers of vaccine-induced long-term functional immunity.


Assuntos
Formação de Anticorpos/imunologia , Imunidade , Contagem de Linfócitos , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinação , Adolescente , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Testes de Inibição da Hemaglutinação , Humanos , Imunofenotipagem , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Ativação Linfocitária/imunologia , Prognóstico , Vigilância em Saúde Pública , Receptores CXCR5/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Fatores de Tempo , Adulto Jovem
13.
PLoS One ; 10(6): e0129879, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26066485

RESUMO

Innate response activator (IRA) B cells have been described in mice as a subset of B-1a B cells that produce granulocyte/macrophage colony-stimulating factor (GM-CSF) and have been found in the spleen upon activation. In humans, identification, tissue localization and functionality of these lymphocytes are poorly understood. We hypothesized that IRA B cells could reside in human palatine tonsils, which are a first line of defense from infection of the upper respiratory tract. In the present work, we used flow cytometry and confocal microscopy to identify and characterize human IRA (hIRA) B cells in tonsils. We show that CD19⁺CD20⁺GM-CSF⁺ B cells are present in the tonsils of all the subjects studied at a frequency ranging between ~0.2% and ~0.4% of the conventional CD19⁺CD20⁺GM-CSF⁻ B cells. These cells reside within the B cell follicles, are mostly IgM⁺IgD⁺, express CD5 and show phagocytic activity. Our results support a role for hIRA B cells in the effector immune response to infections in tonsils.


Assuntos
Linfócitos B/imunologia , Tonsila Palatina/imunologia , Fagocitose , Adolescente , Antígenos CD19/genética , Antígenos CD19/metabolismo , Antígenos CD20/genética , Antígenos CD20/metabolismo , Linfócitos B/microbiologia , Antígenos CD5/genética , Antígenos CD5/metabolismo , Células Cultivadas , Criança , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Tonsila Palatina/citologia , Tonsila Palatina/microbiologia , Staphylococcus aureus/patogenicidade
14.
J Immunol ; 194(10): 4836-45, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25870238

RESUMO

The early life influenza disease burden calls for more effective vaccines to protect this vulnerable population. Influenza vaccines including the MF59 oil-in-water adjuvant induce higher, broader, and more persistent Ab responses in adults and particularly in young, through yet undefined mechanisms. In this study, we show that MF59 enhances adult murine IgG responses to influenza hemagglutinin (HA) by promoting a potent T follicular helper cells (TFH) response, which directly controls the magnitude of the germinal center (GC) B cell response. Remarkably, this enhancement of TFH and GC B cells is already fully functional in 3-wk-old infant mice, which were fully protected by HA/MF59 but not HA/PBS immunization against intranasal challenge with the homologous H1N1 (A/California/7/2009) strain. In 1-wk-old neonatal mice, MF59 recruits and activates APCs, efficiently induces CD4(+) effector T cells and primes for enhanced infant responses but induces few fully functional TFH cells, which are mostly follicular regulatory T cells, and poor GC and anti-HA responses. The B cell adjuvanticity of MF59 appears to be mediated by the potent induction of TFH cells which directly controls GC responses both in adult and early life, calling for studies assessing its capacity to enhance the efficacy of influenza immunization in young infants.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vacinas contra Influenza/imunologia , Polissorbatos/farmacologia , Esqualeno/farmacologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Animais Recém-Nascidos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Centro Germinativo/imunologia , Imuno-Histoquímica , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Esqualeno/imunologia
15.
Pediatr Infect Dis J ; 34(1): 73-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25037034

RESUMO

INTRODUCTION: Annual seasonal influenza epidemics are particularly dangerous for the very young, the elderly and chronically ill individuals, in whom infection can cause severe morbidity, hospitalization and death. Existing, nonadjuvanted influenza vaccines exhibit a suboptimal immunogenicity and efficacy in immunologically naive subjects such as young children. METHODS: This phase II, randomized clinical trial was conducted to evaluate the antibody and cell-mediated responses to a trivalent influenza vaccine administered without adjuvant (TIV) or adjuvanted with MF59 (ATIV) in previously nonvaccinated children less than 3 years of age. RESULTS: The MF59-adjuvanted vaccine was well tolerated, and induced higher titers of hemagglutination inhibition antibodies able to recognize strains different from the one used in the vaccine (heterovariant) than TIV. The presence of the adjuvant MF59 induced a larger expansion of vaccine-specific CD4 T cells. Interestingly, the adjuvant MF59 did not modify the cytokine profile of the elicited T cells, characterized by the production of IL-2 and TNF-α, and did not bias the response toward either Th1 or Th2. The advantage of ATIV over TIV was more pronounced for the virus strains that had not circulated in the years that preceded this study and for the heterovariant strains. CONCLUSION: These data highlight the relevant role played by the oil-in-water adjuvant MF59 in enhancing the immunogenicity of inactivated influenza vaccines in immunologically naive individuals.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Polissorbatos/administração & dosagem , Esqualeno/administração & dosagem , Pré-Escolar , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Lactente , Interleucina-2/metabolismo , Masculino , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
16.
PLoS One ; 9(12): e114159, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25473968

RESUMO

There is a need for techniques capable of identifying the antigenic epitopes targeted by polyclonal antibody responses during deliberate or natural immunization. Although successful, traditional phage library screening is laborious and can map only some of the epitopes. To accelerate and improve epitope identification, we have employed massive sequencing of phage-displayed antigen-specific libraries using the Illumina MiSeq platform. This enabled us to precisely identify the regions of a model antigen, the meningococcal NadA virulence factor, targeted by serum antibodies in vaccinated individuals and to rank hundreds of antigenic fragments according to their immunoreactivity. We found that next generation sequencing can significantly empower the analysis of antigen-specific libraries by allowing simultaneous processing of dozens of library/serum combinations in less than two days, including the time required for antibody-mediated library selection. Moreover, compared with traditional plaque picking, the new technology (named Phage-based Representation OF Immuno-Ligand Epitope Repertoire or PROFILER) provides superior resolution in epitope identification. PROFILER seems ideally suited to streamline and guide rational antigen design, adjuvant selection, and quality control of newly produced vaccines. Furthermore, this method is also susceptible to find important applications in other fields covered by traditional quantitative serology.


Assuntos
Antígenos de Bactérias/genética , Epitopos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Meningite Meningocócica/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/isolamento & purificação , Epitopos/imunologia , Epitopos/isolamento & purificação , Humanos , Meningite Meningocócica/sangue , Meningite Meningocócica/microbiologia , Neisseria meningitidis/imunologia , Neisseria meningitidis/patogenicidade , Biblioteca de Peptídeos
17.
Hum Vaccin Immunother ; 10(6): 1701-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24732325

RESUMO

UNLABELLED: Strategies to optimize responses to seasonal influenza vaccination in older adults include the use of adjuvants, higher antigen doses, and intradermal delivery. In this study adults aged ≥65 years (n = 450) received a single dose of 1 of 2 non-adjuvanted trivalent influenza vaccine (TIV) formulations administered intradermally (ID), both containing 6 µg of A/H1N1 and B, differing in A/H3N2 content (6 µg or 12 µg), or a single dose of 1 of 8 TIV formulations administered intramuscularly (IM) all containing 15 µg of A/H1N1 and B, differing in A/H3N2 hemagglutinin (HA) content (15 µg or 30 µg) and/or in MF59(®) adjuvant content (0%, 25%, 50%, or 100% of the standard dose). This paper focuses on the comparisons of low-dose non-adjuvanted ID, full-dose non-adjuvanted IM and full-dose MF59-adjuvanted IM formulations (n = 270). At day 22 post-vaccination, at least one European licensure immunogenicity criterion was met by all groups against all 3 strains; however, all three criteria were met against all 3 vaccine strains by the low-dose non-adjuvanted ID and the full-dose MF59-adjuvanted IM groups only. The full-dose MF59-adjuvanted IM group elicited significantly higher immune response vs. the low-dose non-adjuvanted ID formulations for most comparisons. The full-dose MF59 adjuvanted IM groups were associated with increased pain at the site of injection (P<0.01) compared to the ID groups, and the low-dose non-adjuvanted ID groups were associated with increased erythema, induration, and swelling at the injection site (P<0.0001) and unsolicited AEs compared with the IM groups. There were no differences between IM and ID groups in the frequencies of subjects experiencing solicited systemic reactions. Overall, while MF59 adjuvantation increased pain at the site of injection, and intradermal delivery increased unsolicited adverse events, erythema, induration, and swelling at the injection site, both strategies of vaccination strongly enhanced the immunogenicity of seasonal influenza vaccine in older adults compared with conventional non-adjuvanted intramuscular delivery. TRIAL REGISTRATION: http://www.clinicaltrials.gov: NCT00848848.


Assuntos
Adjuvantes Imunológicos/efeitos adversos , Relação Dose-Resposta Imunológica , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Polissorbatos/efeitos adversos , Esqualeno/efeitos adversos , Adjuvantes Imunológicos/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/administração & dosagem , Injeções Intradérmicas , Injeções Intramusculares , Masculino , Polissorbatos/administração & dosagem , Esqualeno/administração & dosagem
18.
PLoS One ; 9(4): e95496, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24755693

RESUMO

In an open label clinical study (2007), MF59-adjuvanted hemagglutinin (HA) vaccine from H5N1-A/Vietnam/1194/2004 (clade 1) was administered to subjects previously vaccinated (primed) with clade 0 H5N3 (A/duck/Singapore/97) vaccine at least 6 years earlier (in 1999 or 2001). The primed individuals responded rapidly and generated high neutralizing antibody titers against the H5N1-Vietnam strain within 7 days of a single booster vaccination. Furthermore, significant cross-neutralization titers were measured against H5N1 clade 0, 1, and 2 viruses. In the current study, the impact of MF59 adjuvant during heterologous priming on the quality of humoral polyclonal immune response in different vaccine arms were further evaluated using real time kinetics assay by surface plasmon resonance (SPR). Total anti-H5N1 HA1 polyclonal sera antibody binding from the heterologous prime-boost groups after a single MF59-H5N1 boost was significantly higher compared with sera from unprimed individuals that received two MF59-H5N1 vaccinations. The antigen-antibody complex dissociation rates (surrogate for antibody affinity) of the polyclonal sera against HA1 of H5N1-A/Vietnam/1194/2004 from the MF59-H5N3 primed groups were significantly higher compared to sera from unadjuvanted primed groups or unprimed individuals that received two MF59-H5N1 vaccines. Furthermore, strong inverse correlations were observed between the antibody dissociation off-rates of the immune sera against HA1 (but not HA2) and the virus neutralization titers against H5 vaccine strains and heterologous H5N1 strains. These findings supports the use of oil-in-water-adjuvanted pandemic influenza vaccines to elicit long term memory B cells with high affinity BCR capable of responding to potential variant pandemic viruses likely to emerge and adapt to human transmissions.


Assuntos
Afinidade de Anticorpos/imunologia , Reações Cruzadas/imunologia , Hemaglutininas/imunologia , Imunização Secundária , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Polissorbatos/administração & dosagem , Esqualeno/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antivirais/sangue , Apresentação Cruzada/imunologia , Hemaglutininas/química , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Testes de Neutralização , Estrutura Terciária de Proteína , Vacinação , Vacinas de Subunidades Antigênicas/imunologia
19.
Proc Natl Acad Sci U S A ; 110(35): 14330-5, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940329

RESUMO

Protection against influenza is mediated by neutralizing antibodies, and their induction at high and sustained titers is key for successful vaccination. Optimal B cells activation requires delivery of help from CD4(+) T lymphocytes. In lymph nodes and tonsils, T-follicular helper cells have been identified as the T cells subset specialized in helping B lymphocytes, with interleukin-21 (IL-21) and inducible costimulatory molecule (ICOS1) playing a central role for this function. We followed the expansion of antigen-specific IL-21(+) CD4(+) T cells upon influenza vaccination in adults. We show that, after an overnight in vitro stimulation, influenza-specific IL-21(+) CD4(+) T cells can be measured in human blood, accumulate in the CXCR5(-)ICOS1(+) population, and increase in frequency after vaccination. The expansion of influenza-specific ICOS1(+)IL-21(+) CD4(+) T cells associates with and predicts the rise of functionally active antibodies to avian H5N1. We also show that blood-derived CXCR5(-)ICOS1(+) CD4(+) T cells exert helper function in vitro and support the differentiation of influenza specific B cells in an ICOS1- and IL-21-dependent manner. We propose that the expansion of antigen-specific ICOS1(+)IL-21(+) CD4(+) T cells in blood is an early marker of vaccine immunogenicity and an important immune parameter for the evaluation of novel vaccination strategies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Humanos , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/sangue , Influenza Humana/prevenção & controle , Interleucinas , Vacinação
20.
PLoS One ; 8(8): e70620, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23976947

RESUMO

Understanding the impact that human memory B-cells (MBC), primed by previous infections or vaccination, exert on neutralizing antibody responses against drifted influenza hemagglutinin (HA) is key to design best protective vaccines. A major obstacle to these studies is the lack of practical tools to analyze HA-specific MBCs in human PBMCs ex vivo. We report here an efficient method to identify MBCs carrying HA-specific BCR in frozen PBMC samples. By using fluorochrome-tagged recombinant HA baits, and vaccine antigens from mismatched influenza strains to block BCR-independent binding, we developed a protocol suitable for quantitative, functional and molecular analysis of single MBCs specific for HA from up to two different influenza strains in the same tube. This approach will permit to identify the naive and MBC precursors of plasmablasts and novel MBCs appearing in the blood following infection or vaccination, thus clarifying the actual contribution of pre-existing MBCs in antibody responses against novel influenza viruses. Finally, this protocol can allow applying high throughput deep sequencing to analyze changes in the repertoire of HA⁺ B-cells in longitudinal samples from large cohorts of vaccinees and infected subjects with the ultimate goal of understanding the in vivo B-cell dynamics driving the evolution of broadly cross-protective antibody responses.


Assuntos
Linfócitos B/citologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Memória Imunológica , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H3N2/química , Vírus da Influenza B/química , Influenza Humana/imunologia , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Separação Celular/métodos , Reações Cruzadas , Citometria de Fluxo/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Ligação Proteica , Anticorpos de Domínio Único/biossíntese , Anticorpos de Domínio Único/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...