Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 83(12): 6257-68, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19357161

RESUMO

Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic alpha-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic alpha-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.


Assuntos
Membrana Celular/virologia , Hepacivirus/genética , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular Tumoral , Dicroísmo Circular , Proteínas de Fluorescência Verde/química , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Alinhamento de Sequência , Espectroscopia de Infravermelho com Transformada de Fourier
2.
J Virol ; 82(1): 569-74, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17942559

RESUMO

Hepatitis C virus-positive serum (HCVser, genotypes 1a to 3a) or HCV cell culture (JFH1/HCVcc) infection of primary normal human hepatocytes was assessed by measuring intracellular HCV RNA strands. Anti-CD81 antibodies and siRNA-CD81 silencing markedly inhibited (>90%) HCVser infection irrespective of HCV genotype, viral load, or liver donor, while hCD81-large intracellular loop (LEL) had no effect. However, JFH1/HCVcc infection of hepatocytes was modestly inhibited (40 to 60%) by both hCD81-LEL and anti-CD81 antibodies. In conclusion, CD81 is involved in HCVser infection of human hepatocytes, and comparative studies of HCVser versus JFH1/HCVcc infection of human hepatocytes and Huh-7.5 cells revealed that the cell-virion combination is determinant of the entry process.


Assuntos
Antígenos CD/fisiologia , Hepacivirus/fisiologia , Hepatócitos/virologia , Receptores Virais/fisiologia , Internalização do Vírus , Adolescente , Adulto , Idoso , Antígenos CD/genética , Antígenos CD/imunologia , Células Cultivadas , Feminino , Inativação Gênica , Hepatócitos/química , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/análise , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/imunologia , Tetraspanina 28
3.
J Hepatol ; 46(3): 411-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17156886

RESUMO

BACKGROUND/AIMS: The direct implication of low-density lipoprotein receptor (LDLR) in hepatitis C virus (HCV) infection of human hepatocyte has not been demonstrated. Normal primary human hepatocytes infected by serum HCV were used to document this point. METHODS: Expression and activity of LDLR were assessed by RT-PCR and LDL entry, in the absence or presence of squalestatin or 25-hydroxycholesterol that up- or down-regulates LDLR expression, respectively. Infection was performed in the absence or presence of LDL, HDL, recombinant soluble LDLR peptides encompassing full-length (r-shLDLR4-292) or truncated (r-shLDLR4-166) LDL-binding domain, monoclonal antibodies against r-shLDLR4-292, squalestatin or 25-hydroxycholesterol. Intracellular amounts of replicative and genomic HCV RNA strands used as end point of infection were assessed by RT-PCR. RESULTS: r-shLDLR4-292, antibodies against r-shLDLR4-292 and LDL inhibited viral RNA accumulation, irrespective of genotype, viral load or liver donor. Inhibition was greatest when r-shLDLR4-292 was present at the time of inoculation and gradually decreased as the delay between inoculation and r-shLDLR4-292 treatment increased. In hepatocytes pre-treated with squalestatin or 25-hydroxycholesterol before infection, viral RNA accumulation increased or decreased in parallel with LDLR mRNA expression and LDL entry. CONCLUSIONS: LDLR is involved at an early stage in infection of normal human hepatocytes by serum-derived HCV virions.


Assuntos
Hepacivirus/patogenicidade , Hepatite C/fisiopatologia , Hepatócitos/virologia , Receptores de LDL/fisiologia , Adolescente , Adulto , Idoso , Anticorpos/fisiologia , Anticolesterolemiantes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Antígenos CD18/fisiologia , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C/patologia , Hepatócitos/patologia , Humanos , Hidroxicolesteróis/farmacologia , Lipoproteínas HDL/fisiologia , Lipoproteínas LDL/fisiologia , Masculino , Pessoa de Meia-Idade , RNA Viral/genética , RNA Viral/metabolismo , Receptores de LDL/genética , Receptores de LDL/imunologia , Receptores Depuradores Classe B/fisiologia , Ácidos Tricarboxílicos/farmacologia , Carga Viral , Vírion
4.
Hepatology ; 38(3): 771-4, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12939604

RESUMO

The study of hepatitis C virus (HCV), a major cause of chronic liver disease, has been hampered by the lack of a cell culture system supporting its replication. Here, we have successfully generated infectious pseudo-particles that were assembled by displaying unmodified and functional HCV glycoproteins onto retroviral and lentiviral core particles. The presence of a green fluorescent protein marker gene packaged within these HCV pseudo-particles allowed reliable and fast determination of infectivity mediated by the HCV glycoproteins. Primary hepatocytes as well as hepato-carcinoma cells were found to be the major targets of infection in vitro. High infectivity of the pseudo-particles required both E1 and E2 HCV glycoproteins, and was neutralized by sera from HCV-infected patients and by some anti-E2 monoclonal antibodies. In addition, these pseudo-particles allowed investigation of the role of putative HCV receptors. Although our results tend to confirm their involvement, they provide evidence that neither LDLr nor CD81 is sufficient to mediate HCV cell entry. Altogether, these studies indicate that these pseudo-particles may mimic the early infection steps of parental HCV and will be suitable for the development of much needed new antiviral therapies.

5.
J Virol ; 76(16): 8189-99, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12134024

RESUMO

Chronic hepatitis C is a common cause of liver disease, the complications of which include cirrhosis and hepatocellular carcinoma. Treatment of chronic hepatitis C is based on the use of alpha interferon (IFN-alpha). Recently, indirect evidence based on mathematical modeling of hepatitis C virus (HCV) dynamics during human IFN-alpha therapy suggested that the major initial effect of IFN-alpha is to block HCV virion production or release. Here, we used primary cultures of healthy, uninfected human hepatocytes to show that: (i) healthy human hepatocytes can be infected in vitro and support HCV genome replication, (ii) hepatocyte treatment with IFN-alpha results in expression of IFN-alpha-induced genes, and (iii) IFN-alpha inhibits HCV replication in infected human hepatocytes. These results show that IFN-alpha acts primarily through its nonspecific antiviral effects and suggest that primary cultures of human hepatocytes may provide a good model to study intrinsic HCV resistance to IFN-alpha.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Interferon-alfa/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Sequência de Bases , Células Cultivadas , Genoma Viral , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Técnicas In Vitro , Interferon alfa-2 , Modelos Biológicos , Mutação , RNA Viral/biossíntese , RNA Viral/genética , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...