Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206714

RESUMO

Robotic-assisted systems have gained significant traction in post-stroke therapies to support rehabilitation, since these systems can provide high-intensity and high-frequency treatment while allowing accurate motion-control over the patient's progress. In this paper, we tackle how to provide active support through a robotic-assisted exoskeleton by developing a novel closed-loop architecture that continually measures electromyographic signals (EMG), in order to adjust the assistance given by the exoskeleton. We used EMG signals acquired from four patients with post-stroke hand impairments for training machine learning models used to characterize muscle effort by classifying three muscular condition levels based on contraction strength, co-activation, and muscular activation measurements. The proposed closed-loop system takes into account the EMG muscle effort to modulate the exoskeleton velocity during the rehabilitation therapy. Experimental results indicate the maximum variation on velocity was 0.7 mm/s, while the proposed control system effectively modulated the movements of the exoskeleton based on the EMG readings, keeping a reference tracking error <5%.


Assuntos
Exoesqueleto Energizado , Articulação da Mão , Reabilitação do Acidente Vascular Cerebral , Eletromiografia , Mãos , Humanos , Músculos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...