Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(5): e0043923, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37154680

RESUMO

Homologous recombination plays a key function in the evolution of bacterial genomes. Within Xylella fastidiosa, an emerging plant pathogen with increasing host and geographic ranges, it has been suggested that homologous recombination facilitates host switching, speciation, and the development of virulence. We used 340 whole-genome sequences to study the relationship between inter- and intrasubspecific homologous recombination, random mutation, and natural selection across individual X. fastidiosa genes. Individual gene orthologs were identified and aligned, and a maximum likelihood (ML) gene tree was generated. Each gene alignment and tree pair were then used to calculate gene-wide and branch-specific r/m values (relative effect of recombination to mutation), gene-wide and branch-site nonsynonymous over synonymous substitution rates (dN/dS values; episodic selection), and branch length (as a proxy for mutation rate). The relationships between these variables were evaluated at the global level (i.e., for all genes among and within a subspecies), among specific functional classes (i.e., COGs), and between pangenome components (i.e., accessory versus core genes). Our analysis showed that r/m varied widely among genes as well as across X. fastidiosa subspecies. While r/m and dN/dS values were positively correlated in some instances (e.g., core genes in X. fastidiosa subsp. fastidiosa and both core and accessory genes in X. fastidiosa subsp. multiplex), low correlation coefficients suggested no clear biological significance. Overall, our results indicate that, in addition to its adaptive role in certain genes, homologous recombination acts as a homogenizing and a neutral force across phylogenetic clades, gene functional groups, and pangenome components. IMPORTANCE There is ample evidence that homologous recombination occurs frequently in the economically important plant pathogen Xylella fastidiosa. Homologous recombination has been known to occur among sympatric subspecies and is associated with host-switching events and virulence-linked genes. As a consequence, is it generally assumed that recombinant events in X. fastidiosa are adaptive. This mindset influences expectations of how homologous recombination acts as an evolutionary force as well as how management strategies for X. fastidiosa diseases are determined. Yet, homologous recombination plays roles beyond that of a source for diversification and adaptation. Homologous recombination can act as a DNA repair mechanism, as a means to facilitate nucleotide compositional change, as a homogenization mechanism within populations, or even as a neutral force. Here, we provide a first assessment of long-held beliefs regarding the general role of recombination in adaptation for X. fastidiosa. We evaluate gene-specific variations in homologous recombination rate across three X. fastidiosa subspecies and its relationship to other evolutionary forces (e.g., natural selection, mutation, etc.). These data were used to assess the role of homologous recombination in X. fastidiosa evolution.


Assuntos
Variação Genética , Xylella , Filogenia , Genoma Bacteriano , Xylella/genética , Recombinação Homóloga , Plantas/genética , Doenças das Plantas/microbiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-36237301

RESUMO

Neutral evolution is a fundamental concept in evolutionary biology but teaching this and other non-adaptive concepts is especially challenging. Here we present Genie, a browser-based educational tool that demonstrates population-genetic concepts such as genetic drift, population isolation, gene flow, and genetic mutation. Because it does not need to be downloaded and installed, Genie can scale to large groups of students and is useful for both in-person and online instruction. Genie was used to teach genetic drift to Evolution students at Arizona State University during Spring 2016 and Spring 2017. The effectiveness of Genie to teach key genetic drift concepts and misconceptions was assessed with the Genetic Drift Inventory developed by Price et al. (CBE Life Sci Educ 13(1):65-75, 2014). Overall, Genie performed comparably to that of traditional static methods across all evaluated classes. We have empirically demonstrated that Genie can be successfully integrated with traditional instruction to reduce misconceptions about genetic drift.

3.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898423

RESUMO

The economically important plant pathogen Xylella fastidiosa has been reported in multiple regions of the globe during the last two decades, threatening a growing list of plants. Particularly, X. fastidiosa subspecies fastidiosa causes Pierce's disease (PD) of grapevines, which is a problem in the USA, Spain, and Taiwan. In this work, we studied PD-causing subsp. fastidiosa populations and compared the genome sequences of 33 isolates found in Central Taiwan with 171 isolates from the USA and two from Spain. Phylogenetic relationships, haplotype networks, and genetic diversity analyses confirmed that subsp. fastidiosa was recently introduced into Taiwan from the Southeast USA (i.e. the PD-I lineage). Recent core-genome recombination events were detected among introduced subsp. fastidiosa isolates in Taiwan and contributed to the development of genetic diversity. The genetic diversity observed includes contributions through recombination from unknown donors, suggesting that higher genetic diversity exists in the region. Nevertheless, no recombination event was detected between X. fastidiosa subsp. fastidiosa and the endemic sister species Xylella taiwanensis, which is the causative agent of pear leaf scorch disease. In summary, this study improved our understanding of the genetic diversity of an important plant pathogenic bacterium after its invasion to a new region.


Assuntos
Variação Genética , Vitis/microbiologia , Sequenciamento Completo do Genoma/métodos , Xylella/classificação , Genoma Bacteriano , Haplótipos , Filogenia , Filogeografia , Doenças das Plantas/microbiologia , Espanha , Taiwan , Estados Unidos , Xylella/genética , Xylella/isolamento & purificação
4.
Microb Genom ; 7(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34904938

RESUMO

The invasive plant pathogen Xylella fastidiosa currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, X. fastidiosa was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS). OQDS has led to significant economic, environmental, cultural, as well as political crises. Although the biology of X. fastidiosa diseases have been studied for over a century, there is still no information on the determinants of specificity between bacterial genotypes and host plant species, which is particularly relevant today as X. fastidiosa is expanding in the naive European landscape. We analysed the genomes of 79 X. fastidiosa samples from diseased olive trees across the affected area in Italy as well as genomes of the most genetically closely related strains from Central America. We provided insights into the ecological and evolutionary emergence of this pathogen in Italy. We first showed that the outbreak in Apulia is due to a single introduction from Central America that we estimated to have occurred in 2008 [95 % HPD: 1930-2016]. By using a combination of population genomic approaches and evolutionary genomics methods, we further identified a short list of genes that could play a major role in the adaptation of X. fastidiosa to this new environment. We finally provided experimental evidence for the adaptation of the strain to this new environment.


Assuntos
Olea/microbiologia , Sequenciamento Completo do Genoma/métodos , Xylella/classificação , Adaptação Fisiológica , América Central , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Filogenia , Filogeografia , Doenças das Plantas/microbiologia , Xylella/genética , Xylella/isolamento & purificação
5.
G3 (Bethesda) ; 11(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33715000

RESUMO

Nucleotide composition (GC content) varies across bacteria species, genome regions, and specific genes. In Xylella fastidiosa, a vector-borne fastidious plant pathogen infecting multiple crops, GC content ranges between ∼51-52%; however, these values were gathered using limited genomic data. We evaluated GC content variations across X. fastidiosa subspecies fastidiosa (N = 194), subsp. pauca (N = 107), and subsp. multiplex (N = 39). Genomes were classified based on plant host and geographic origin; individual genes within each genome were classified based on gene function, strand, length, ortholog group, core vs accessory, and recombinant vs non-recombinant. GC content was calculated for each gene within each evaluated genome. The effects of genome and gene-level variables were evaluated with a mixed effect ANOVA, and the marginal-GC content was calculated for each gene. Also, the correlation between gene-specific GC content vs natural selection (dN/dS) and recombination/mutation (r/m) was estimated. Our analyses show that intra-genomic changes in nucleotide composition in X. fastidiosa are small and influenced by multiple variables. Higher AT-richness is observed in genes involved in replication and translation, and genes in the leading strand. In addition, we observed a negative correlation between high-AT and dN/dS in subsp. pauca. The relationship between recombination and GC content varied between core and accessory genes. We hypothesize that distinct evolutionary forces and energetic constraints both drive and limit these small variations in nucleotide composition.


Assuntos
Nucleotídeos , Plantas , Nucleotídeos/genética , Filogenia , Replicon , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
6.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33483307

RESUMO

Within the landscape of globally distributed pathogens, populations differentiate via both adaptive and nonadaptive forces. Individual populations are likely to show unique trends of genetic diversity, host-pathogen interaction, and ecological adaptation. In plant pathogens, allopatric divergence may occur particularly rapidly within simplified agricultural monoculture landscapes. As such, the study of plant pathogen populations in monocultures can highlight the distinct evolutionary mechanisms that lead to local genetic differentiation. Xylella fastidiosa is a plant pathogen known to infect and damage multiple monocultures worldwide. One subspecies, Xylella fastidiosa subsp. fastidiosa, was first introduced to the United States ∼150 years ago, where it was found to infect and cause disease in grapevines (Pierce's disease of grapevines, or PD). Here, we studied PD-causing subsp. fastidiosa populations, with an emphasis on those found in the United States. Our study shows that following their establishment in the United States, PD-causing strains likely split into populations on the East and West Coasts. This diversification has occurred via both changes in gene content (gene gain/loss events) and variations in nucleotide sequence (mutation and recombination). In addition, we reinforce the notion that PD-causing populations within the United States acted as the source for subsequent subsp. fastidiosa outbreaks in Europe and Asia.IMPORTANCE Compared to natural environments, the reduced diversity of monoculture agricultural landscapes can lead bacterial plant pathogens to quickly adapt to local biological and ecological conditions. Because of this, accidental introductions of microbial pathogens into naive regions represents a significant economic and environmental threat. Xylella fastidiosa is a plant pathogen with an expanding host and geographic range due to multiple intra- and intercontinental introductions. X. fastidiosa subsp. fastidiosa infects and causes disease in grapevines (Pierce's disease of grapevines [PD]). This study focused on PD-causing X. fastidiosa populations, particularly those found in the United States but also invasions into Taiwan and Spain. The analysis shows that PD-causing X. fastidiosa has diversified via multiple cooccurring evolutionary forces acting at an intra- and interpopulation level. This analysis enables a better understanding of the mechanisms leading to the local adaptation of X. fastidiosa and how a plant pathogen diverges allopatrically after multiple and sequential introduction events.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/fisiologia , Estados Unidos
7.
BMC Genomics ; 21(1): 369, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434538

RESUMO

BACKGROUND: Pathogens with a global distribution face diverse biotic and abiotic conditions across populations. Moreover, the ecological and evolutionary history of each population is unique. Xylella fastidiosa is a xylem-dwelling bacterium infecting multiple plant hosts, often with detrimental effects. As a group, X. fastidiosa is divided into distinct subspecies with allopatric historical distributions and patterns of multiple introductions from numerous source populations. The capacity of X. fastidiosa to successfully colonize and cause disease in naïve plant hosts varies among subspecies, and potentially, among populations. Within Central America (i.e. Costa Rica) two X. fastidiosa subspecies coexist: the native subsp. fastidiosa and the introduced subsp. pauca. Using whole genome sequences, the patterns of gene gain/loss, genomic introgression, and genetic diversity were characterized within Costa Rica and contrasted to other X. fastidiosa populations. RESULTS: Within Costa Rica, accessory and core genome analyses showed a highly malleable genome with numerous intra- and inter-subspecific gain/loss events. Likewise, variable levels of inter-subspecific introgression were found within and between both coexisting subspecies; nonetheless, the direction of donor/recipient subspecies to the recombinant segments varied. Some strains appeared to recombine more frequently than others; however, no group of genes or gene functions were overrepresented within recombinant segments. Finally, the patterns of genetic diversity of subsp. fastidiosa in Costa Rica were consistent with those of other native populations (i.e. subsp. pauca in Brazil). CONCLUSIONS: Overall, this study shows the importance of characterizing local evolutionary and ecological history in the context of world-wide pathogen distribution.


Assuntos
Evolução Molecular , Xylella/genética , Costa Rica , Introgressão Genética , Variação Genética , Genoma Bacteriano/genética , Espécies Introduzidas , Filogenia , Filogeografia , Doenças das Plantas/microbiologia , Recombinação Genética , Especificidade da Espécie , Xylella/classificação , Xylella/isolamento & purificação
8.
Mol Plant Microbe Interact ; 33(3): 402-411, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31972098

RESUMO

Although bacterial host colonization is a dynamic process that requires population growth, studies often focus on comparing bacterial populations at a given time point. However, this may not reflect the dynamics of the colonization process. Time-course assays provide important insights into the dynamics of host colonization but are laborious and may still lack resolution for immediate processes affecting populations. An alternative way to address this issue, using widely accessible tools (such as quantitative PCR [qPCR]), is to take advantage of the relationship between bacterial chromosomal replication and cell division to determine population growth status at the sampling time. Conceptually, the ratio between the number of copies at the origin of replication and that at the terminus of replication should be correlated with the measured bacterial growth rate. This peak-to-trough ratio (PTR) to estimate instantaneous population growth status was tested with the slow-growing plant-pathogenic bacterium Xylella fastidiosa. We found no correlation between PTR and the measured growth rate when using genome-level data but overall sequencing depth of coverage trends matched theoretical expectations. On the other hand, the population growth status of X. fastidiosa was predicted by PTR when using qPCR data, which was improved by the pretreatment of cells with a photoreactive DNA-binding dye. Our results suggest that PTR could be used to determine X. fastidiosa growth status both in planta and in insect vectors. We expect PTR will perform better with fast-growing bacterial pathogens, potentially becoming a powerful tool for easily and quickly assessing population growth status.


Assuntos
Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/crescimento & desenvolvimento , Animais , Meios de Cultura/química , Insetos Vetores/microbiologia
9.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31704683

RESUMO

Pathogen introductions have led to numerous disease outbreaks in naive regions of the globe. The plant pathogen Xylella fastidiosa has been associated with various recent epidemics in Europe affecting agricultural crops, such as almond, grapevine, and olive, but also endemic species occurring in natural forest landscapes and ornamental plants. We compared whole-genome sequences of X. fastidiosa subspecies multiplex from America and strains associated with recent outbreaks in southern Europe to infer their likely origins and paths of introduction within and between the two continents. Phylogenetic analyses indicated multiple introductions of X. fastidiosa subspecies multiplex into Italy, Spain, and France, most of which emerged from a clade with limited genetic diversity with a likely origin in California, USA. The limited genetic diversity observed in X. fastidiosa subspecies multiplex strains originating from California is likely due to the clade itself being an introduction from X. fastidiosa subspecies multiplex populations in the southeastern United States, where this subspecies is most likely endemic. Despite the genetic diversity found in some areas in Europe, there was no clear evidence of recombination occurring among introduced X. fastidiosa strains in Europe. Sequence type taxonomy, based on multilocus sequence typing (MLST), was shown, at least in one case, to not lead to monophyletic clades of this pathogen; whole-genome sequence data were more informative in resolving the history of introductions than MLST data. Although additional data are necessary to carefully tease out the paths of these recent dispersal events, our results indicate that whole-genome sequence data should be considered when developing management strategies for X. fastidiosa outbreaks.IMPORTANCEXylella fastidiosa is an economically important plant-pathogenic bacterium that has emerged as a pathogen of global importance associated with a devastating epidemic in olive trees in Italy associated with X. fastidiosa subspecies pauca and other outbreaks in Europe, such as X. fastidiosa subspecies fastidiosa and X. fastidiosa subspecies multiplex in Spain and X. fastidiosa subspecies multiplex in France. We present evidence of multiple introductions of X. fastidiosa subspecies multiplex, likely from the United States, into Spain, Italy, and France. These introductions illustrate the risks associated with the commercial trade of plant material at global scales and the need to develop effective policy to limit the likelihood of pathogen pollution into naive regions. Our study demonstrates the need to utilize whole-genome sequence data to study X. fastidiosa introductions at outbreak stages, since a limited number of genetic markers does not provide sufficient phylogenetic resolution to determine dispersal paths or relationships among strains that are of biological and quarantine relevance.


Assuntos
Genoma Bacteriano , Doenças das Plantas/microbiologia , Xylella/genética , Brasil , Europa (Continente) , Espécies Introduzidas , Sequenciamento Completo do Genoma
10.
Microbiol Resour Announc ; 8(47)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31753936

RESUMO

We report the draft assemblies of TPD3 and TPD4, two Xylella fastidiosa subsp. fastidiosa isolates infecting grapevines in Hou-li, Taiwan. TPD3 and TPD4 showed similar characteristics regarding genome size (2,483,503 bp and 2,491,539 bp, respectively), GC content (51.49% and 51.47%, respectively), and number of protein-coding sequences (2,394 and 2,413, respectively).

11.
Genome Biol Evol ; 11(2): 497-507, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689842

RESUMO

Plasmodium parasites are valuable models to understand how nucleotide composition affects mutation, diversification, and adaptation. No other observed eukaryotes have undergone such large changes in genomic Guanine-Cytosine (GC) content as seen in the genus Plasmodium (∼30% within 35-40 Myr). Although mutational biases are known to influence GC content in the human-infective Plasmodium vivax and Plasmodium falciparum; no study has addressed how different gene functional classes contribute to genus-wide compositional changes, or if Plasmodium GC content variation is driven by natural selection. Here, we tested the hypothesis that certain gene processes and functions drive variation in global GC content between Plasmodium species. We performed a large-scale comparative genomic analysis using the genomes and predicted genes of 17 Plasmodium species encompassing a wide genomic GC content range. Genic GC content was sorted and divided into ten equally sized quantiles that were then assessed for functional enrichment classes. In agreement that selection on gene classes may drive genomic GC content, trans-membrane proteins were enriched within extreme GC content quantiles (Q1 and Q10). Specifically, variant surface antigens, which primarily interact with vertebrate immune systems, showed skewed GC content distributions compared with other trans-membrane proteins. Although a definitive causation linking GC content, expression, and positive selection within variant surface antigens from Plasmodium vivax, Plasmodium berghei, and Plasmodium falciparum could not be established, we found that regardless of genomic nucleotide composition, genic GC content and expression were positively correlated during trophozoite stages. Overall, these data suggest that, alongside mutational biases, functional protein classes drive Plasmodium GC content change.


Assuntos
Antígenos de Protozoários/genética , Composição de Bases , Genoma de Protozoário , Plasmodium/genética , Expressão Gênica , Plasmodium/imunologia , Seleção Genética
12.
Infect Genet Evol ; 50: 7-19, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28163236

RESUMO

Malaria parasites (genus Plasmodium) are a diverse group found in many species of vertebrate hosts. These parasites invade red blood cells in a complex process comprising several proteins, many encoded by multigene families, one of which is merozoite surface protein 7 (msp7). In the case of Plasmodium vivax, the most geographically widespread human-infecting species, differences in the number of paralogs within multigene families have been previously explained, at least in part, as potential adaptations to the human host. To explore this in msp7, we studied its orthologs in closely related nonhuman primate parasites; investigating both paralog evolutionary history and genetic polymorphism. The emerging patterns were then compared with the human parasite Plasmodium falciparum. We found that the evolution of the msp7 family is consistent with a birth-and-death model, where duplications, pseudogenizations, and gene loss events are common. However, all paralogs in P. vivax and P. falciparum had orthologs in their closely related species in non-human primates indicating that the ancestors of those paralogs precede the events leading to their origins as human parasites. Thus, the number of paralogs cannot be explained as an adaptation to human hosts. Although there is no functional information for msp7 in P. vivax, we found evidence for purifying selection in the genetic polymorphism of some of its paralogs as well as their orthologs in closely related non-human primate parasites. We also found evidence indicating that a few of P. vivax's paralogs may have diverged from their orthologs in non-human primates by episodic positive selection. Hence, they may had been under selection when the lineage leading to P. vivax diverged from the Asian non-human primates and switched into Homininae. All these lines of evidence suggest that msp7 is functionally important in P. vivax.


Assuntos
Evolução Molecular , Proteínas de Membrana/genética , Filogenia , Plasmodium cynomolgi/genética , Plasmodium falciparum/genética , Plasmodium knowlesi/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Animais , Eritrócitos/parasitologia , Deleção de Genes , Duplicação Gênica , Expressão Gênica , Especiação Genética , Humanos , Modelos Genéticos , Família Multigênica , Plasmodium cynomolgi/classificação , Plasmodium falciparum/classificação , Plasmodium knowlesi/classificação , Plasmodium vivax/classificação , Polimorfismo Genético , Primatas/parasitologia , Pseudogenes , Seleção Genética , Homologia de Sequência de Aminoácidos
13.
PLoS Negl Trop Dis ; 10(6): e0004786, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27347876

RESUMO

Transmission-blocking (TB) vaccines are considered an important tool for malaria control and elimination. Among all the antigens characterized as TB vaccines against Plasmodium vivax, the ookinete surface proteins Pvs28 and Pvs25 are leading candidates. These proteins likely originated by a gene duplication event that took place before the radiation of the known Plasmodium species to primates. We report an evolutionary genetic analysis of a worldwide sample of pvs28 and pvs25 alleles. Our results show that both genes display low levels of genetic polymorphism when compared to the merozoite surface antigens AMA-1 and MSP-1; however, both ookinete antigens can be as polymorphic as other merozoite antigens such as MSP-8 and MSP-10. We found that parasite populations in Asia and the Americas are geographically differentiated with comparable levels of genetic diversity and specific amino acid replacements found only in the Americas. Furthermore, the observed variation was mainly accumulated in the EGF2- and EGF3-like domains for P. vivax in both proteins. This pattern was shared by other closely related non-human primate parasites such as Plasmodium cynomolgi, suggesting that it could be functionally important. In addition, examination with a suite of evolutionary genetic analyses indicated that the observed patterns are consistent with positive natural selection acting on Pvs28 and Pvs25 polymorphisms. The geographic pattern of genetic differentiation and the evidence for positive selection strongly suggest that the functional consequences of the observed polymorphism should be evaluated during development of TBVs that include Pvs25 and Pvs28.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Malária Vivax/transmissão , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Evolução Molecular , Regulação da Expressão Gênica , Haplótipos , Humanos , Malária Vivax/parasitologia , Modelos Moleculares , Polimorfismo Genético , Conformação Proteica , Proteínas de Protozoários/metabolismo , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...