Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Int Astron Union ; 15(Suppl 350): 388-389, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33072171

RESUMO

In cosmic environments, polycyclic aromatic hydrocarbons (PAHs) strongly interact with vacuum ultraviolet (VUV) photons emitted by young stars. Trapped PAH cations ranging in size from 30 to 48 carbon atoms were irradiated by tunable synchrotron light (DESIRS beamline at SOLEIL). Their ionization and dissociation cross sections were determined and compared with TD-DFT computed photoabsorption cross sections. Evidence for radiative cooling is reported.

2.
Int J Mass Spectrom ; 429: 189-197, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30186034

RESUMO

We present a detailed study of the main dehydrogenation processes of two dibenzopyrene cation (C24H14+) isomers, namely dibenzo(a,e)pyrene (AE+) and dibenzo(a,l)pyrene (AL+). First, action spectroscopy under VUV photons was performed using synchrotron radiation in the 8-20 eV range. We observed lower dissociation thresholds for the non-planar molecule (AL+) than for the planar one (AE+) for the main dissociation pathways: H and 2H/H2 loss. In order to rationalize the experimental results, dissociation paths were investigated by means of density functional theory calculations. In the case of H loss, which is the dominant channel at the lowest energies, the observed difference between the two isomers can be explained by the presence in AL+ of two C-H bonds with considerably lower adiabatic dissociation energies. In both isomers the 2H/H2 loss channels are observed only at about 1 eV higher than H loss. We suggest that this is due to the propensity of bay H atoms to easily form H2. In addition, in the case of AL+, we cannot exclude a competition between 2H and H2 channels. In particular, the formation of a stable dissociation product with a five-membered ring could account for the low energy sequential loss of 2 hydrogens. This work shows the potential role of non-compact PAHs containing bay regions in the production of H2 in space.

3.
Astrophys J ; 822(2)2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27212712

RESUMO

Interstellar polycyclic aromatic hydrocarbons (PAHs) are strongly affected by the absorption of vacuum ultraviolet (VUV) photons in the interstellar medium (ISM), yet the branching ratio between ionization and fragmentation is poorly studied. This is crucial for the stability and charge state of PAHs in the ISM in different environments, affecting in turn the chemistry, the energy balance, and the contribution of PAHs to the extinction and emission curves. We studied the interaction of PAH cations with VUV photons in the 7 - 20 eV range from the synchrotron SOLEIL beamline, DESIRS. We recorded by action spectroscopy the relative intensities of photo-fragmentation and photo-ionization for a set of eight PAH cations ranging in size from 14 to 24 carbon atoms, with different structures. At photon energies below ~13.6 eV fragmentation dominates for the smaller species, while for larger species ionization is immediately competitive after the second ionization potential (IP). At higher photon energies, all species behave similarly, the ionization yield gradually increases, leveling off between 0.8 and 0.9 at ~18 eV. Among isomers, PAH structure appears to mainly affect the fragmentation cross section, but not the ionization cross section. We also measured the second IP for all species and the third IP for two of them, all are in good agreement with theoretical ones confirming that PAH cations can be further ionized in the diffuse ISM. Determining actual PAH dication abundances in the ISM will require detailed modeling. Our measured photo-ionization yields for several PAH cations provide a necessary ingredient for such models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...