Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nutrients ; 15(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630722

RESUMO

Fetal programming provides explanatory mechanisms for the currently high prevalence of gestational obesity. The endocannabinoid system (ECS) participates in the regulation of energy balance, and with a high-fat diet (HFD), it is overactivated. The aim of this study was to determine the effects of a nutritional intervention during pregnancy and lactation on obese female progenitors, on metabolic alterations of the offspring and on the involvement of ECS. Female mice (C57/BL/6-F0), 45 days old, and their offspring (males) were separated according to type of diet before and during gestation and lactation: CON-F1: control diet; HFD-F1 group: HFD (fat: 60% Kcal); INT-F1 group: HFD until mating and control diet (fat: 10% Kcal) afterward. Glucose tolerance and insulin sensitivity (IS) were tested at 2 and 4 months. At 120 days, mice were sacrificed, plasma was extracted for the determination of hormones, and livers for gene expression and the protein level determination of ECS components. INT-F1 group presented a lower IS compared to CON-F1, and normal levels of adiponectin and corticosterone in relation to the HFD-F1 group. The intervention increased hepatic gene expression for fatty-acid amide hydrolase and monoacylglycerol lipase enzymes; however, these differences were not observed at the protein expression level. Our results suggest that this intervention model normalized some hormonal parameters and hepatic mRNA levels of ECS components that were altered in the offspring of progenitors with pre-pregnancy obesity.


Assuntos
Endocanabinoides , Resistência à Insulina , Feminino , Masculino , Gravidez , Animais , Camundongos , Lactação , Obesidade , Dieta Hiperlipídica/efeitos adversos , Reprodução
2.
Artigo em Inglês | MEDLINE | ID: mdl-32028098

RESUMO

Micronutrients (folates and vitamin B12) and long chain polyunsaturated fatty acids (LC-PUFAs) are linked through the one carbon cycle. We studied the effects of pre and postnatal high FA/low B12 diets (HFLB12) on hepatic fatty acid metabolism. Pregnant C57BL/6 mice were divided in two groups: control (2 mg folic acid: FA/25 µg vitamin B12/Kg food) and HFLB12 diets (8 mg FA/5 µg vitamin B12/Kg food). Offspring continued on the same diets until 60 days old. We determined hepatic fatty acid profile in dams and offspring and the expression of PPARα, Cpt-1, Acox-1 and Fas and the enzymatic activity of desaturases, all involved in lipid metabolism. In liver of dams, the HFHB12 diet decreased total fatty acids and desaturase activities; in offspring, effects were opposite, being more noticeable in females. Prenatal and postnatal unbalanced folic acid/B12 diets play a crucial role in regulating genes and enzymes involved in lipid metabolism in liver of dams and their offspring in adulthood.


Assuntos
Ácidos Graxos/metabolismo , Ácido Fólico/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/química , Vitamina B 12/administração & dosagem , Acil-CoA Oxidase/metabolismo , Animais , Animais Recém-Nascidos , Ácidos Graxos Dessaturases/metabolismo , Feminino , Ácido Fólico/farmacocinética , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/metabolismo , Cuidado Pós-Natal , Gravidez , Vitamina B 12/farmacocinética , Receptor fas
3.
J Nutr Metab ; 2019: 2806519, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800481

RESUMO

Several reports have shown that stress during lactation causes long-term metabolic and hormonal disruptions. In this study, we designed experiments to evaluate the effects of stress during lactation on the abundance of Type 1 cannabinoid/endocannabinoid receptors (CB1R) in epididymal fat and liver and development of insulin resistance in adult mice. During the whole lactation, male mice pups were daily subcutaneously injected (days 1-21) with a saline solution to produce a soft nociceptive stress (NS). Mice body weight and food intake were periodically evaluated. Adult animals were subsequently subjected to an insulin tolerance test and some days later sacrificed to evaluate the amount of epididymal fat and abundance of CB1R and adipophilin in liver and epididymal adipose tissue. Lipoprotein lipase (LPL) activity and circulating levels of leptin, adiponectin, and corticosterone were also evaluated. In this model, NS during lactation significantly increased the amount of epididymal fat and induced insulin resistance in adult mice. In addition, a significantly increased abundance of CB1R and adipophilin in epididymal fat and liver was observed, together with elevated circulating levels of leptin and corticosterone. Adult NS animals also had low plasmatic adiponectin and, although nonsignificant, had a sustained trend to a greater LPL activity associated with epididymal fat. These results indicate that increased abundance of CB1R in liver and epididymal fat alters tissue functionality likely associated with development of systemic metabolic alterations such as insulin resistance in adult mice. All these pathophysiological facts are long-term consequences of nociceptive stress during lactation.

4.
J Nutr Metab ; 2017: 2945010, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28808587

RESUMO

We have previously shown that administration of the endocannabinoid anandamide (AEA) during lactation leads to overweight, increased body fat accumulation, and insulin resistance in adult mice. This study was designed to elucidate if these effects are due to increased food intake, stimulated by an augmented abundance and binding ability of the hypothalamic cannabinoid type 1 receptor (CB1R). With this aim, male mice pups were treated with a daily oral dose of AEA during lactation. Adult mice were also treated with a single oral dose of AEA, to evaluate acute food intake during 4 h. At 21 and 160 days, CB1R protein abundance was calculated by western blot analysis. Capacity of hypothalamic membranes to specifically bind the radioligand 3[H]-CP55.940 was also measured. Western blots showed a 72% increase in CB1R abundance in AEA-treated 21-day-old mice, without differences in adult mice. Additionally, specific binding of 3[H]-CP55.940 to hypothalamic membranes from adult mice was significantly lower in those mice treated with AEA during lactation. Moreover, AEA did not stimulate acute food intake in both, AEA-treated and control mice. Results suggest that metabolic alterations found in adult mice because of AEA treatment during lactation are not associated with hypothalamic CB1R.

5.
Rev Med Chil ; 142(3): 353-60, 2014 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-25052273

RESUMO

The endocannabinoid system (SEC) is an important modulator of several metabolic functions. This system is composed by cannabinoid receptors type 1 and 2 (RCB1 and RCB2), their endogenous ligands, known as endocannabinoids, and the enzymes involved in their synthesis and degradation. A deregulated SEC originates metabolic alterations in several tissues, resulting in the typical manifestations of the metabolic syndrome. Liver steatosis of different origins constitutes a physiopathological condition where an altered hepatic SEC is observed. In this condition, there is an increased expression of RCB1 and/or higher endocannabinoid levels in different hepatic cells, which may exert an autocrine/paracrine hyperstimulation of RCB1/RCB2. Activation of RCB1 stimulate the expression of several hepatocyte lipogenic factors, thus leading to increased de novo fatty acids synthesis and consequently to an abnormal accumulation of triglycerides. The effect of RCB2 activity on hepatic function is still controversial because, on one side its stimulation has an interesting protective effect on alcoholic liver disease while, on the other, it may enhance the development of hepatic steatosis in experimental models of diet-induced obesity. In this review we discuss the proposed mechanisms by which SEC is involved in the etiology of hepatic steatosis, as well as the therapeutic possibilities involving peripheral RCB1/RCB2 antagonism/agonism, for the treatment of this condition.


Assuntos
Moduladores de Receptores de Canabinoides/fisiologia , Endocanabinoides/fisiologia , Fígado Gorduroso/etiologia , Receptor CB1 de Canabinoide/fisiologia , Fígado Gorduroso/fisiopatologia , Humanos , Receptor CB2 de Canabinoide/fisiologia
6.
Rev. méd. Chile ; 142(3): 353-360, mar. 2014. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-714360

RESUMO

The endocannabinoid system (SEC) is an important modulator of several metabolic functions. This system is composed by cannabinoid receptors type 1 and 2 (RCB1 and RCB2), their endogenous ligands, known as endocannabinoids, and the enzymes involved in their synthesis and degradation. A deregulated SEC originates metabolic alterations in several tissues, resulting in the typical manifestations of the metabolic syndrome. Liver steatosis of different origins constitutes a physiopathological condition where an altered hepatic SEC is observed. In this condition, there is an increased expression of RCB1 and/or higher endocannabinoid levels in different hepatic cells, which may exert an autocrine/paracrine hyperstimulation of RCB1/RCB2. Activation of RCB1 stimulate the expression of several hepatocyte lipogenic factors, thus leading to increased de novo fatty acids synthesis and consequently to an abnormal accumulation of triglycerides. The effect of RCB2 activity on hepatic function is still controversial because, on one side its stimulation has an interesting protective effect on alcoholic liver disease while, on the other, it may enhance the development of hepatic steatosis in experimental models of diet-induced obesity. In this review we discuss the proposed mechanisms by which SEC is involved in the etiology of hepatic steatosis, as well as the therapeutic possibilities involving peripheral RCB1/RCB2 antagonism/agonism, for the treatment of this condition.


Assuntos
Humanos , Moduladores de Receptores de Canabinoides/fisiologia , Endocanabinoides/fisiologia , Fígado Gorduroso/etiologia , Receptor CB1 de Canabinoide/fisiologia , Fígado Gorduroso/fisiopatologia , /fisiologia
7.
Diabetol Metab Syndr ; 4(1): 35, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22823902

RESUMO

BACKGROUND: Environmental conditions in early life can induce permanent physiological changes, sometimes increasing the risk of chronic diseases during adulthood. Neural and peripheral circuits controlling energy balance may be modulated during such a critical period. Since type 1 cannabinoid receptors (CB1R) have recently emerged as targets for modulating energy balance, their premature chronic activation during early life may result in long-term metabolic consequences associated to overweight/obesity. Endogenous activation of CB1R mainly occurs after binding to the endocannabinoid Anandamide (AEA). OBJECTIVE: To evaluate long-term effects of AEA treatment during lactation on body weight, epididymal fat accumulation and related metabolic parameters during adulthood. DESIGN: Male mice pups were orally treated with a solution of AEA (20 µg/g body weight in soy oil) or vehicle during the whole lactation period. After weaning, food intake and body weight were recorded every 10 days. Adult animals were subjected to glucose and insulin tolerance tests. Subsequently, animals were sacrificed and epididymal fat pads were extracted. Circulating levels of plasma insulin, leptin, non-sterified fatty acids (NEFA), triglyceride and cholesterol were also evaluated. RESULTS: AEA-treated mice during lactation showed a significant increase in accumulated food intake, body weight and epididymal fat during adulthood when compared to control mice. When evaluating CB1R protein expression in epididymal fat, the AEA-treated group showed a 150 % increase in expression compared to the control mice. This group also displayed significantly higher levels of circulating glucose, insulin, leptin, triglycerides, cholesterol and NEFA. Moreover, a marked state of insulin resistance was an important finding in the AEA-treated group. CONCLUSION: This study showed that overweight, accumulation of visceral fat and associated metabolic disturbances, such as a higher lipid profile and insulin resistance, can be programmed by a treatment with the endocannabinoid AEA during lactation in adult mice.

8.
Obesity (Silver Spring) ; 19(1): 29-35, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20559305

RESUMO

Perinatal stress may cause metabolic and hormonal disruptions during adulthood. The aim of this study was to evaluate the effects of early postnatal nociceptive stimulation (NS) on body weight and other metabolic parameters during adulthood and to determine whether CB1 endocannabinoid receptors (CB1Rs) may be involved in these effects. Male mice were subjected to NS during lactation with a daily subcutaneous injection of saline solution. Subsequently, both control and NS-mice were treated from day 40 to 130, with an oral dose (1 µg/g body weight) of SR141716A, a specific CB1R antagonist/inverse agonist. Mice body weight and food intake was periodically evaluated. Adult animals were then killed to evaluate epididymal fat pads and metabolic parameters. NS did not influence food intake in adult animals, but caused significant increases in body weight, epididymal fat pads, and circulating levels of leptin, corticosterone, and triglycerides (TGs). Chronic treatment with SR141716A normalized these parameters, with the exception of corticosterone levels. This treatment also reduced plasma levels of glucose, insulin, and total cholesterol in both adult control and NS-mice. In addition, fatty acid (FA) amide hydrolase (FAAH) activity (the enzyme able to hydrolyze endocannabinoids) from liver and epididymal fat of adult NS-mice was decreased by 40-50% in comparison to activities found in same tissues of control mice. Results suggest that overactive liver and epididymal fat CB1R due to early NS may be involved in late metabolic alterations, which are sensitive to chronic treatment with SR141716A.


Assuntos
Doenças Metabólicas/tratamento farmacológico , Sobrepeso/tratamento farmacológico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Estresse Psicológico/complicações , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Epididimo , Feminino , Hormônios/sangue , Masculino , Doenças Metabólicas/sangue , Doenças Metabólicas/etiologia , Camundongos , Sobrepeso/sangue , Sobrepeso/etiologia , Sobrepeso/metabolismo , Gravidez , Receptor CB1 de Canabinoide/antagonistas & inibidores , Rimonabanto , Estresse Psicológico/metabolismo , Fatores de Tempo
9.
Rev Med Chil ; 138(5): 621-9, 2010 May.
Artigo em Espanhol | MEDLINE | ID: mdl-20668819

RESUMO

Endocannabinoids are the endogenous ligands for the cannabinoid receptors type 1 and 2. These membrane receptors are responsible for the psychotropic effects of Cannabis Sativa, when bound to its active component known as (-)-Delta(9)-tetrahydro-cannabinol. Cannabinoid receptors, endocannabinoids and the enzymes catalyzing their biosynthesis and degradation, constitute the endocannabinoid system (ECS), which has a remarkable role controlling energy balance, both at central nervous system and peripheral tissues. The ECS regulates food ingestion by stimulating a network of orexigenic neurons present in the hypothalamus and reinforcing motivation and reward to food consumption in the nucleus accumbens. Regarding peripheral tissues, this system controls lipid and glucose metabolism at different levels, reduces energy expenditure and leads energy balance to fat storage. Metabolic alterations, including excessive accumulation of abdominal fat, dyslipidaemia and hyperglicaemia, are suggested to be associated to a hyperactivated ECS. Since obesity is one of the major health problems in modern societies, in this review we discuss the role of the endocannabinoid system in metabolic pathways associated to control mechanisms of energy balance and its involvement in overweight and obesity. In addition, we also discuss therapeutic possibilities and emergent problems due to cannabinoid receptor type 1 antagonism utilized as treatment for such alterations.


Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Metabolismo Energético/fisiologia , Lipogênese/fisiologia , Obesidade/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Humanos , Lipídeos/biossíntese , Obesidade/tratamento farmacológico , Obesidade/etiologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/uso terapêutico
10.
Rev. méd. Chile ; 138(5): 621-629, mayo 2010. ilus
Artigo em Espanhol | LILACS | ID: lil-553269

RESUMO

Endocannabinoids are the endogenous ligands for the cannabinoid receptors type 1 and 2. These membrane receptors are responsible for the psychotropic effects of Cannabis Sativa, when bound to its active component known as (-)-Δ9-tetrahydro-cannabinol. Cannabinoid receptors, endocannabinoids and the enzymes catalyzing their biosynthesis and degradation, constitute the endocannabinoid system (ECS), which has a remarkable role controlling energy balance, both at central nervous system and peripheral tissues. The ECS regulates food ingestion by stimulating a network of orexigenic neurons present in the hypothalamus and reinforcing motivation and reward to food consumption in the nucleus accumbens. Regarding peripheral tissues, this system controls lipid and glucose metabolism at different levels, reduces energy expenditure and leads energy balance to fat storage. Metabolic alterations, includ-ing excessive accumulation of abdominal fat, dyslipidaemia and hyperglicaemia, are suggested to be associated to a hyperactivated ECS. Since obesity is one of the major health problems in modern societies, in this review we discuss the role of the endocannabinoid system in metabolic pathways associated to control mechanisms of energy balance and its involvement in overweight and obesity. In addition, we also discuss therapeutic possibilities and emergent problems due to cannabinoid receptor type 1 antagonism utilized as treatment for such alterations.


Assuntos
Humanos , Endocanabinoides/metabolismo , Metabolismo Energético/fisiologia , Lipogênese/fisiologia , Obesidade/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Lipídeos/biossíntese , Obesidade/tratamento farmacológico , Obesidade/etiologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...