Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychologia ; 196: 108822, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38342179

RESUMO

Ambient sound can mask acoustic signals. The current study addressed how echolocation in people is affected by masking sound, and the role played by type of sound and spatial (i.e. binaural) similarity. We also investigated the role played by blindness and long-term experience with echolocation, by testing echolocation experts, as well as blind and sighted people new to echolocation. Results were obtained in two echolocation tasks where participants listened to binaural recordings of echolocation and masking sounds, and either localized echoes in azimuth or discriminated echo audibility. Echolocation and masking sounds could be either clicks or broad band noise. An adaptive staircase method was used to adjust signal-to-noise ratios (SNRs) based on participants' responses. When target and masker had the same binaural cues (i.e. both were monoaural sounds), people performed better (i.e. had lower SNRs) when target and masker used different types of sound (e.g. clicks in noise-masker or noise in clicks-masker), as compared to when target and masker used the same type of sound (e.g. clicks in click-, or noise in noise-masker). A very different pattern of results was observed when masker and target differed in their binaural cues, in which case people always performed better when clicks were the masker, regardless of type of emission used. Further, direct comparison between conditions with and without binaural difference revealed binaural release from masking only when clicks were used as emissions and masker, but not otherwise (i.e. when noise was used as masker or emission). This suggests that echolocation with clicks or noise may differ in their sensitivity to binaural cues. We observed the same pattern of results for echolocation experts, and blind and sighted people new to echolocation, suggesting a limited role played by long-term experience or blindness. In addition to generating novel predictions for future work, the findings also inform instruction in echolocation for people who are blind or sighted.


Assuntos
Localização de Som , Animais , Humanos , Localização de Som/fisiologia , Cegueira , Ruído , Acústica , Sinais (Psicologia) , Mascaramento Perceptivo , Estimulação Acústica/métodos
2.
Sci Rep ; 11(1): 1750, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462283

RESUMO

Echolocating bats adapt their emissions to succeed in noisy environments. In the present study we investigated if echolocating humans can detect a sound-reflecting surface in the presence of noise and if intensity of echolocation emissions (i.e. clicks) changes in a systematic pattern. We tested people who were blind and had experience in echolocation, as well as blind and sighted people who had no experience in echolocation prior to the study. We used an echo-detection paradigm where participants listened to binaural recordings of echolocation sounds (i.e. they did not make their own click emissions), and where intensity of emissions and echoes changed adaptively based on participant performance (intensity of echoes was yoked to intensity of emissions). We found that emission intensity had to systematically increase to compensate for weaker echoes relative to background noise. In fact, emission intensity increased so that spectral power of echoes exceeded spectral power of noise by 12 dB in 4-kHz and 5-kHz frequency bands. The effects were the same across all participant groups, suggesting that this effect occurs independently of long-time experience with echolocation. Our findings demonstrate for the first time that people can echolocate in the presence of noise and suggest that one potential strategy to deal with noise is to increase emission intensity to maintain signal-to-noise ratio of certain spectral components of the echoes.


Assuntos
Adaptação Fisiológica/fisiologia , Cegueira/fisiopatologia , Ecolocação/fisiologia , Localização de Som/fisiologia , Som , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...