Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 111(8): 1469-75, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25314223

RESUMO

Cancer is a disease caused by DNA mutations. Cancer therapies targeting defined functional mutations have shown clinical benefit. However, as 95% of the mutations in a tumour are unique to that single patient and only a small number of mutations are shared between patients, the addressed medical need is modest. A rapidly determined patient-specific tumour mutation pattern combined with a flexible mutation-targeting drug platform could generate a mutation-targeting individualised therapy, which would benefit each single patient. Next-generation sequencing enables the rapid identification of somatic mutations in individual tumours (the mutanome). Immunoinformatics enables predictions of mutation immunogenicity. Mutation-targeting RNA-based vaccines can be rapidly and affordably synthesised as custom GMP drug products. Integration of these cutting-edge technologies into a clinically applicable process holds the promise of a disruptive innovation benefiting cancer patients. Here, we describe our translation of the individualised RNA-based cancer vaccine concept into clinic trials.


Assuntos
Vacinas Anticâncer/genética , Medicina de Precisão , RNA Neoplásico/genética , Pesquisa Translacional Biomédica , Avaliação Pré-Clínica de Medicamentos , Humanos , Mutação
2.
Xenobiotica ; 36(10-11): 963-88, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17118916

RESUMO

Carrier-mediated transporters play a critical role in xenobiotic disposition and transporter research is complicated by species differences and their selective tissue expression. The purpose of this study was to generate a comprehensive data set of xenobiotic transporter gene expression profiles in humans and the pre-clinical species mouse, rat, beagle dog and cynomolgus monkey. mRNA expression profiles of 50 genes from the ABC, SLC and SLCO transporter superfamilies were examined in 40 human tissues by microarray analyses. Transporter genes that were identified as enriched in the liver or kidney, or that were selected for their known roles in xenobiotic disposition, were then compared in 22 tissues across the five species. Finally, as clinical variability in drug response and adverse reactions may be the result of variability in transporter gene expression, variability in the expression of selected transporter genes in 75 human liver donors were examined and compared with the highly variable drug metabolizing enzyme CYP3A4.


Assuntos
Perfilação da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Xenobióticos/metabolismo , Animais , Feminino , Expressão Gênica , Humanos , Inativação Metabólica , Rim/metabolismo , Fígado/metabolismo , Masculino , Especificidade da Espécie , Doadores de Tecidos
3.
Xenobiotica ; 36(10-11): 938-62, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17118915

RESUMO

Oligonucleotide microarrays were used to study the variability of pharmacokinetics and drug metabolism (PKDM)-related gene expression in 75 normal human livers. The objective was to define and use absorption, distribution, metabolism and excretion (ADME) gene expression variability to discern co-regulated genes and potential surrogate biomarkers of inducible gene expression. RNA was prepared from donor tissue and hybridized on Agilent microarrays against an RNA mass balanced pool from all donors. Clustering of PKDM gene sets revealed donors with distinct patterns of gene expression that grouped genes known to be regulated by the nuclear receptor, pregnane X-receptor (PXR). Fold range metrics and frequency distributions from the heterogeneous human population were used to define the variability of individual PKDM genes in the 75 human livers and were placed in context by comparing expression data with basal ADME gene expression variability in an inbred and diet/environment controlled population of 27 Rhesus livers. The most variable genes in the hepatic transcriptome were mainly related to drug metabolism, intermediary metabolism, inflammation and cell cycle control. Unique patterns of expression across 75 individuals of inducible ADME gene expression allowed their expression to be correlated with the expression of many other genes. Correlated genes for AhR, CAR and PXR responsive genes (CYP1A2, CYP2B6 and CYP3A4) were identified that may be co-regulated and, therefore, provide clues to the identity of surrogate gene or protein markers for CYP induction. In conclusion, microarrays were used to define the variable expression of hepatic ADME genes in a diverse human population, the expression variability of ADME genes was compared with the expression variability in an inbred population of Rhesus monkeys, and genes were defined that may be co-regulated with important inducible CYP genes.


Assuntos
Perfilação da Expressão Gênica , Fígado/metabolismo , Modelos Biológicos , Transcrição Gênica , Xenobióticos/metabolismo , Animais , Análise por Conglomerados , Humanos , Inativação Metabólica , Macaca mulatta , Biologia de Sistemas , Xenobióticos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...