Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J STEM Educ ; 11(1): 14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404757

RESUMO

Background: Large introductory lecture courses are frequently post-secondary students' first formal interaction with science, technology, engineering, and mathematics (STEM) disciplines. Grade outcomes in these courses are often disparate across student populations, which, in turn, has implications for student retention. This study positions such disparities as a manifestation of systemic inequities along the dimensions of sex, race/ethnicity, income, and first-generation status and investigates the extent to which they are similar across peer institutions. Results: We examined grade outcomes in a selected set of early STEM courses across six large, public, research-intensive universities in the United States over ten years. In this sample of more than 200,000 STEM course enrollments, we find that course grade benefits increase significantly with the number of systemic advantages students possess at all six institutions. The observed trends in academic outcomes versus advantage are strikingly similar across universities despite the fact that we did not control for differences in grading practices, contexts, and instructor and student populations. The findings are concerning given that these courses are often students' first post-secondary STEM experiences. Conclusions: STEM course grades are typically lower than those in other disciplines; students taking them often pay grade penalties. The systemic advantages some student groups experience are correlated with significant reductions in these grade penalties at all six institutions. The consistency of these findings across institutions and courses supports the claim that inequities in STEM education are a systemic problem, driven by factors that go beyond specific courses or individual institutions. Our work provides a basis for the exploration of contexts where inequities are exacerbated or reduced and can be used to advocate for structural change within STEM education. To cultivate more equitable learning environments, we must reckon with how pervasive structural barriers in STEM courses negatively shape the experiences of marginalized students. Supplementary Information: The online version contains supplementary material available at 10.1186/s40594-024-00474-7.

2.
CBE Life Sci Educ ; 21(1): es1, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35100005

RESUMO

The recent anti-racist movements in the United States have inspired a national call for more research on the experiences of racially marginalized and minoritized students in science, technology, engineering, and mathematics (STEM) fields. As researchers focused on promoting diversity, equity, and inclusion, we contend that STEM education must, as a discipline, grapple with how analytic approaches may not fully support equity efforts. We discuss how researchers and educational practitioners should more critically approach STEM equity analyses and why modifying our approaches matters for STEM equity goals. Engaging with equity as a process rather than a static goal, we provide a primer of reflective questions to assist researchers with framing, analysis, and interpretation of student-level data frequently used to identify disparities and assess course-level and programmatic interventions. This guidance can inform analyses conducted by campus units such as departments and programs, but also across universities and the scientific community to enhance how we understand and address systemic inequity in STEM fields.


Assuntos
Engenharia , Estudantes , Engenharia/educação , Humanos , Matemática , Tecnologia/educação , Universidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...