Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38045297

RESUMO

Legionella pneumophila is an accidental human bacterial pathogen that infects and replicates within alveolar macrophages causing a severe atypical pneumonia known as Legionnaires' disease. As a prototypical vacuolar pathogen L. pneumophila establishes a unique endoplasmic reticulum (ER)-derived organelle within which bacterial replication takes place. Bacteria-derived proteins are deposited in the host cytosol and in the lumen of the pathogen-occupied vacuole via a type IVb (T4bSS) and a type II (T2SS) secretion system respectively. These secretion system effector proteins manipulate multiple host functions to facilitate intracellular survival of the bacteria. Subversion of host membrane glycerophospholipids (GPLs) by the internalized bacteria via distinct mechanisms feature prominently in trafficking and biogenesis of the Legionella -containing vacuole (LCV). Conventional GPLs composed of a glycerol backbone linked to a polar headgroup and esterified with two fatty acids constitute the bulk of membrane lipids in eukaryotic cells. The acyl chain composition of GPLs dictates phase separation of the lipid bilayer and therefore determines the physiochemical properties of biological membranes - such as membrane disorder, fluidity and permeability. In mammalian cells, fatty acids esterified in membrane GPLs are sourced endogenously from de novo synthesis or via internalization from the exogenous pool of lipids present in serum and other interstitial fluids. Here, we exploited the preferential utilization of exogenous fatty acids for GPL synthesis by macrophages to reprogram the acyl chain composition of host membranes and investigated its impact on LCV homeostasis and L. pneumophila intracellular replication. Using saturated fatty acids as well as cis - and trans - isomers of monounsaturated fatty acids we discovered that under conditions promoting lipid packing and membrane rigidification L. pneumophila intracellular replication was significantly reduced. Palmitoleic acid - a C16:1 monounsaturated fatty acid - that promotes membrane disorder when enriched in GPLs significantly increased bacterial replication within human and murine macrophages but not in axenic growth assays. Lipidome analysis of infected macrophages showed that treatment with exogenous palmitoleic acid resulted in membrane acyl chain reprogramming in a manner that promotes membrane disorder and live-cell imaging revealed that the consequences of increasing membrane disorder impinge on several LCV homeostasis parameters. Collectively, we provide experimental evidence that L. pneumophila replication within its intracellular niche is a function of the lipid bilayer disorder and hydrophobic thickness.

2.
PLoS Pathog ; 17(12): e1010184, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962968

RESUMO

Dynamic reorganization of the actin cytoskeleton dictates plasma membrane morphogenesis and is frequently subverted by bacterial pathogens for entry and colonization of host cells. The human-adapted bacterial pathogen Neisseria gonorrhoeae can colonize and replicate when cultured with human macrophages, however the basic understanding of how this process occurs is incomplete. N. gonorrhoeae is the etiological agent of the sexually transmitted disease gonorrhea and tissue resident macrophages are present in the urogenital mucosa, which is colonized by the bacteria. We uncovered that when gonococci colonize macrophages, they can establish an intracellular or a cell surface-associated niche that support bacterial replication independently. Unlike other intracellular bacterial pathogens, which enter host cells as single bacterium, establish an intracellular niche and then replicate, gonococci invade human macrophages as a colony. Individual diplococci are rapidly phagocytosed by macrophages and transported to lysosomes for degradation. However, we found that surface-associated gonococcal colonies of various sizes can invade macrophages by triggering actin skeleton rearrangement resulting in plasma membrane invaginations that slowly engulf the colony. The resulting intracellular membrane-bound organelle supports robust bacterial replication. The gonococci-occupied vacuoles evaded fusion with the endosomal compartment and were enveloped by a network of actin filaments. We demonstrate that gonococcal colonies invade macrophages via a process mechanistically distinct from phagocytosis that is regulated by the actin nucleating factor FMNL3 and is independent of the Arp2/3 complex. Our work provides insights into the gonococci life-cycle in association with human macrophages and defines key host determinants for macrophage colonization.


Assuntos
Citoesqueleto de Actina/metabolismo , Forminas/metabolismo , Gonorreia/microbiologia , Macrófagos/microbiologia , Neisseria gonorrhoeae/patogenicidade , Gonorreia/metabolismo , Humanos , Macrófagos/metabolismo , Polimerização
3.
Atherosclerosis ; 278: 66-72, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253291

RESUMO

BACKGROUND AND AIMS: The recombinant adeno-associated viral vector serotype 8 expressing the gain-of-function mutation of mouse proprotein convertase subtilisin/kexin type 9 (AAV8- PCSK9) is a new model for the induction of hypercholesterolemia. AAV8 preferentially infects hepatocytes and the incorporated liver-specific promoter should ensure expression of PCSK9 in the liver. Since tissue distribution of AAVs can differ between male and female mice, we investigated the differences in PCSK9 expression and hypercholesterolemia development between male and female mice using the AAV8-PCSK9 model. METHODS: Male and female C57BL/6 mice were injected with either a low-dose or high-dose of AAV8-PCSK9 and fed a high-fat diet. Plasma lipid levels were evaluated as a measure of the induction of hypercholesterolemia. RESULTS: Injection of mice with low dose AAV8-PCSK9 dramatically elevated both serum PCSK9 and cholesterol levels in male but not female mice. Increasing the dose of AAV8-PCSK9 threefold in female mice rescued the hypercholesterolemia phenotype but did not result in full restoration of AAV8-PCSK9 transduction of livers in female mice compared to the low-dose male mice. Our data demonstrate female mice respond differently to AAV8-PCSK9 injection compared to male mice. CONCLUSIONS: These differences do not hinder the use of female mice when AAV8-PCSK9 doses are taken into consideration. However, localization to and production of AAV8-PCSK9 in organs besides the liver in mice may introduce confounding factors into studies and should be considered during experimental design.


Assuntos
Hipercolesterolemia/metabolismo , Fígado/metabolismo , Pró-Proteína Convertase 9/biossíntese , Fatores Sexuais , Animais , Dependovirus , Modelos Animais de Doenças , Feminino , Técnicas de Transferência de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação
4.
Mutagenesis ; 32(2): 245-256, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27613236

RESUMO

Mycobacterium tuberculosis and Mycobacterium smegmatis express a Ku protein and a DNA ligase D and are able to repair DNA double strand breaks (DSBs) by non-homologous end-joining (NHEJ). This pathway protects against DNA damage when bacteria are in stationary phase. Mycobacterium marinum is a member of this mycobacterium family and like M. tuberculosis is pathogenic. M. marinum lives in water, forms biofilms and infects fish and frogs. M. marinum is a biosafety level 2 (BSL2) organism as it can infect humans, although infections are limited to the skin. M. marinum is accepted as a model to study mycobacterial pathogenesis, as M. marinum and M. tuberculosis are genetically closely related and have similar mechanisms of survival and persistence inside macrophage. The aim of this study was to determine whether M. marinum could be used as a model to understand M. tuberculosis NHEJ repair. We identified and cloned the M. marinum genes encoding NHEJ proteins and generated E. coli strains that express the M. marinum Ku (Mm-Ku) and ligase D (Mm-Lig) individually or together (LHmKumLig strain) from expression vectors integrated at phage attachment sites in the genome. We demonstrated that Mm-Ku and Mm-Lig are both required to re-circularize Cla I-linearized plasmid DNA in E. coli. We compared repair of strain LHmKumLig with that of an E. coli strain (BWKuLig#2) expressing the M. tuberculosis Ku (Mt-Ku) and ligase D (Mt-Lig), and found that LHmKumLig performed 3.5 times more repair and repair was more accurate than BWKuLig#2. By expressing the Mm-Ku with the Mt-Lig, or the Mt-Ku with the Mm-Lig in E. coli, we have shown that the NHEJ proteins from M. marinum and M. tuberculosis can function together to join DNA DSBs. NHEJ repair is therefore conserved between the two species. Consequently, M. marinum is a good model to study NHEJ repair during mycobacterial pathogenesis.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Ligases/metabolismo , Autoantígeno Ku/metabolismo , Mycobacterium marinum/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Clonagem Molecular , DNA Ligases/química , DNA Bacteriano/metabolismo , Escherichia coli/genética , Autoantígeno Ku/química , Mycobacterium marinum/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Plasmídeos/metabolismo , Alinhamento de Sequência
5.
Oncotarget ; 6(38): 41180-93, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26543230

RESUMO

The hepatocyte growth factor receptor (HGFR or c-Met) is a driver of multiple cancer subtypes. While there are several c-Met inhibitors in development, few have been approved for clinical use, warranting the need for continued research and development of c-Met targeting therapeutic modalities. The research presented here demonstrates a particular class of compounds known as isothiocyanatostilbenes can act as c-Met inhibitors in multiple cancer cell lines. Specifically, we found that 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and 4,4'-Diisothiocyanatodihydrostilbene-2,2'-disulfonic acid (H2DIDS) had c-Met inhibitory effective doses in the low micromolar range while 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS) and 4,4'-dinitrostilbene-2, 2'-disulfonic acid (DNDS) exhibited IC50s 100 to 1000 fold higher. These compounds displayed much greater selectivity for inhibiting c-Met activation compared to similar receptor tyrosine kinases. In addition, DIDS and H2DIDS reduced hepatocyte growth factor (HGF)-induced, but not epidermal growth factor (EGF)-induced, cell scattering, wound healing, and 3-dimensional (3D) proliferation of tumor cell spheroids. In-cell and cell-free assays suggested that DIDS and H2DIDS can inhibit and reverse c-Met phosphorylation, similar to SU11274. Additional data demonstrated that DIDS is tolerable in vivo. These data provide preliminary support for future studies examining DIDS, H2DIDS, and derivatives as potential c-Met therapeutics.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/metabolismo , Estilbenos/farmacologia , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/análogos & derivados , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Ácido 4-Acetamido-4'-isotiocianatostilbeno-2,2'-dissulfônico/farmacologia , Animais , Western Blotting , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação/genética , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mutagenesis ; 28(3): 357-66, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23448902

RESUMO

Clustered DNA lesions are defined as ≥2 damage events within 20 bp. Oxidised bases, abasic (AP) sites, single-strand breaks and double-strand breaks (DSBs) exist in radiation-induced clusters, and these lesions are more difficult to repair and can be more mutagenic than single lesions. Understanding clustered lesion repair is therefore important for the design of complementary treatments to enhance radiotherapy. Non-DSB-clustered lesions consisting of opposing AP sites can be converted to DSBs by base excision repair, and non-homologous end-joining (NHEJ) plays a role in repairing these DSBs. Artemis is an endonuclease that removes blocking groups from DSB termini during NHEJ. Hence, we hypothesised that Artemis plays a role in the processing of DSBs or complex DSBs generated from non-DSB-clustered lesions. We examined the repair of clusters containing two or three lesions in wild-type (WT) or Artemis-deficient (ART(-/-)) mouse fibroblasts using a reporter plasmid. Each cluster contained two opposing tetrahydrofurans (an AP site analogue), which AP endonuclease can convert to a DSB with blocked 5' termini. Loss of Artemis did not decrease plasmid survival, but did result in more mutagenic repair with plasmids containing larger deletions. This increase in deletions did not occur with ClaI-linearised plasmid. Since Mre11 has been implicated in deletional NHEJ, we used small interfering RNA to reduce Mre11 in WT and ART(-/-) cells, but decreasing Mre11 did not change the size of deletions in the repair products. This work implicates Artemis in limiting the deletions introduced during repair of 5'-blocked termini DSBs generated from non-DSB-clustered lesions. Decreasing repair accuracy without decreasing repair capacity could result in mutated cells surviving irradiation. Inhibiting Artemis in normal cells could promote carcinogenesis, while in tumour cells enhanced mutagenic repair following irradiation could promote tumour recurrence.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Endonucleases/metabolismo , Proteínas Nucleares/metabolismo , Animais , Linhagem Celular Transformada , Endonucleases/genética , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Interferência de RNA , Transfecção
7.
Mutagenesis ; 26(6): 795-803, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21811007

RESUMO

Radiotherapy and chemotherapy are effective cancer treatments due to their ability to generate DNA damage. The major lethal lesion is the DNA double-strand break (DSB). Human cells predominantly repair DSBs by non-homologous end joining (NHEJ), which requires Ku70, Ku80, DNA-PKcs, DNA ligase IV and accessory proteins. Repair is initiated by the binding of the Ku heterodimer at the ends of the DSB and this recruits DNA-PKcs, which initiates damage signaling and functions in repair. NHEJ also exists in certain types of bacteria that have dormant phases in their life cycle. The Mycobacterium tuberculosis Ku (Mt-Ku) resembles the DNA-binding domain of human Ku but does not have the N- and C-terminal domains of Ku70/80 that have been implicated in binding mammalian NHEJ repair proteins. The aim of this work was to determine whether Mt-Ku could be used as a tool to bind DSBs in mammalian cells and sensitize cells to DNA damage. We generated a fusion protein (KuEnls) of Mt-Ku, EGFP and a nuclear localization signal that is able to perform bacterial NHEJ and hence bind DSBs. Using transient transfection, we demonstrated that KuEnls is able to bind laser damage in the nucleus of Ku80-deficient cells within 10 sec and remains bound for up to 2 h. The Mt-Ku fusion protein was over-expressed in U2OS cells and this increased the sensitivity of the cells to bleomycin sulfate. Hydrogen peroxide and UV radiation do not predominantly produce DSBs and there was little or no change in sensitivity to these agents. Since in vitro studies were unable to detect binding of Mt-Ku to DNA-PKcs or human Ku70/80, this work suggests that KuEnls sensitizes cells by binding DSBs, preventing human NHEJ. This study indicates that blocking or decreasing the binding of human Ku to DSBs could be a method for enhancing existing cancer treatments.


Assuntos
Antígenos Nucleares/metabolismo , Proteínas de Bactérias/metabolismo , Bleomicina/farmacologia , Núcleo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Mycobacterium tuberculosis/metabolismo , Animais , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , DNA Ligases/metabolismo , DNA Circular/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Autoantígeno Ku , Mamíferos , Plasmídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo
8.
DNA Repair (Amst) ; 8(12): 1343-54, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19800300

RESUMO

Current data indicate that clustered DNA damage generated by ionizing radiation contains 2-5 damages within 20 bps. The complexity of clustered damage is also believed to increase as the linear energy transfer of the radiation increases. Complex lesions are therefore biologically relevant especially with the use of carbon ion beam therapy to treat cancer. Since two closely opposed AP site analogs (furans) are converted to a double strand break (DSB) in cells, we hypothesized that breakage could be compromised by increasing the complexity of the cluster. We have examined the repair of clusters containing three and four lesions in mouse fibroblasts using a luciferase reporter plasmid. The addition of a third furan did reduce but not eliminate cleavage, while a tandem 8-oxo-7,8-dihydroguanine (8oxoG) immediately 5' to one furan in a two or three furan cluster decreased DSB formation by a small amount. In vitro studies using nuclear extracts demonstrated that the tandem 8oxoG was not removed under conditions where the furan was cleaved, but the presence of the 8oxoG reduced cleavage at the furan. Interestingly, a cluster of an 8oxoG opposite a furan did not form a DSB in cells. We have shown that Apex1 can cleave these complex clustered lesions in cells. This therefore indicates that Apex1 can generate complex DSBs from clustered lesions consisting of base damage and AP sites. Repair of these complex DSBs may be compromised by the nearby oxidative damage resulting in potentially lethal and biologically relevant damage.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/metabolismo , Família Multigênica , Animais , Linhagem Celular , DNA/isolamento & purificação , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Camundongos , RNA Interferente Pequeno/genética
9.
Nucleic Acids Res ; 36(15): 4872-82, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18653525

RESUMO

Clustered lesions are defined as >or=two lesions within 20 bps and are generated in DNA by ionizing radiation. In vitro studies and work in bacteria have shown that attempted repair of two closely opposed lesions can result in the formation of double strand breaks (DSBs). Since mammalian cells can repair DSBs by non-homologous end-joining (NHEJ), we hypothesized that NHEJ would repair DSBs formed during the removal of clustered tetrahydrofurans (furans). However, two opposing furans situated 2, 5 or 12 bps apart in a firefly luciferase reporter plasmid caused a decrease in luciferase activity in wild-type, Ku80 or DNA-PKcs-deficient cells, indicating the generation of DSBs. Loss of luciferase activity was maximal at 5 bps apart and studies using siRNA implicate the major AP endonuclease in the initial cleavage. Since NHEJ-deficient cells had equivalent luciferase activity to their isogenic wild-type cells, NHEJ was not involved in accurate repair of clustered lesions. However, quantitation and examination of re-isolated DNA showed that damage-containing plasmids were inaccurately repaired by Ku80-dependent, as well as Ku80-independent mechanisms. This work indicates that not even NHEJ can completely prevent the conversion of clustered lesions to potentially lethal DSBs, so demonstrating the biological relevance of ionizing radiation-induced clustered damage.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Animais , Antígenos Nucleares/genética , Linhagem Celular , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas de Ligação a DNA/genética , Furanos/metabolismo , Deleção de Genes , Genes Reporter , Autoantígeno Ku , Luciferases de Vaga-Lume/análise , Luciferases de Vaga-Lume/genética , Camundongos , Plasmídeos/genética , Interferência de RNA
10.
DNA Repair (Amst) ; 6(10): 1413-24, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17560174

RESUMO

Unlike Escherichia coli, Mycobacterium tuberculosis (Mt) expresses a Ku-like protein and an ATP-dependent DNA ligase that can perform non-homologous end-joining (NHEJ). We have expressed the Mt-Ku and Mt-Ligase D in E. coli using an arabinose-inducible promoter and expression vectors that integrate into specific sites in the E. coli chromosome. E. coli strains have been generated that express the Mt-Ku and Mt-Ligase D on a genetic background that is wild-type for repair, or deficient in either the RecA or RecB protein. Transformation of these strains with linearized plasmid DNA containing a 2bp overhang has demonstrated that expression of both the Mt-Ku and Mt-Ligase D is required for DNA end-joining and that loss of RecA does not prevent this double-strand break repair. Analysis of the re-joined plasmid has shown that repair is predominantly inaccurate and results in the deletion of sequences. Loss of RecB did not prevent the formation of large deletions, but did increase the amount of end-joining. Sequencing the junctions has revealed that the majority of the ligations occurred at regions of microhomology (1-4bps), eliminating one copy of the homologous sequence at the junction. The Mt-Ku and Mt-Ligase D can therefore function in E. coli to re-circularize linear plasmid.


Assuntos
Antígenos Nucleares/metabolismo , DNA Ligases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Mycobacterium tuberculosis/metabolismo , Recombinases Rec A/metabolismo , Antígenos Nucleares/genética , Sequência de Bases , Cromossomos Bacterianos , DNA Ligases/genética , Primers do DNA , Proteínas de Ligação a DNA/genética , Autoantígeno Ku , Mycobacterium tuberculosis/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...