Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 360(3): 476-483, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28035007

RESUMO

Factor XI (FXI) is an integral component of the intrinsic pathway of the coagulation cascade and plays a critical role in thrombus formation. Because its role in the pathogenesis of cerebral microembolic signals (MES) is unclear, this study used a potent and selective small molecule inhibitor of FXIa, compound 1, to assess the effect of FXI blockade in our recently established preclinical model of cerebral MES induced by FeCl3 injury of the carotid artery in male New Zealand White rabbits. Ascending doses of compound 1 were evaluated simultaneously for both carotid arterial thrombosis by a Doppler flowmeter and MES in the middle cerebral artery by a transcranial Doppler. Plasma drug exposure and pharmacodynamic responses to compound 1 treatment were also assessed. The effective dose for 50% inhibition (ED50) of thrombus formation was 0.003 mg/kg/h compound 1, i.v. for the integrated blood flow, 0.004 mg/kg/h for reduction in thrombus weight, and 0.106 mg/kg/h for prevention of MES. The highest dose, 3 mg/kg/h compound 1, achieved complete inhibition in both thrombus formation and MES. In addition, we assessed the potential bleeding liability of compound 1 (5 mg/kg/h, i.v., >1250-fold ED50 levels in arterial thrombosis) in rabbits using a cuticle bleeding model, and observed about 2-fold (not statistically significant) prolongation in bleeding time. Our study demonstrates that compound 1 produced a robust and dose-dependent inhibition of both arterial thrombosis and MES, suggesting that FXIa blockade may represent a novel therapeutic strategy for the reduction in MES in patients at risk for ischemic stroke.


Assuntos
Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Trombose das Artérias Carótidas , Fator XIa/antagonistas & inibidores , Embolia Intracraniana , Animais , Coagulação Sanguínea/fisiologia , Trombose das Artérias Carótidas/sangue , Trombose das Artérias Carótidas/complicações , Trombose das Artérias Carótidas/diagnóstico por imagem , Trombose das Artérias Carótidas/tratamento farmacológico , Modelos Animais de Doenças , Desenho de Fármacos , Injeções Intravenosas , Embolia Intracraniana/sangue , Embolia Intracraniana/diagnóstico por imagem , Embolia Intracraniana/etiologia , Embolia Intracraniana/prevenção & controle , Masculino , Coelhos , Ultrassonografia Doppler Transcraniana/métodos
2.
Bioorg Med Chem Lett ; 20(20): 6088-92, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20832306
3.
Mol Pharmacol ; 73(1): 62-74, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17940191

RESUMO

Despite their proven antidiabetic efficacy, widespread use of peroxisome proliferator-activated receptor (PPAR)gamma agonists has been limited by adverse cardiovascular effects. To overcome this shortcoming, selective PPARgamma modulators (SPPARgammaMs) have been identified that have antidiabetic efficacy comparable with full agonists with improved tolerability in preclinical species. The results of structural studies support the proposition that SPPARgammaMs interact with PPARgamma differently from full agonists, thereby providing a physical basis for their novel activities. Herein, we describe a novel PPARgamma ligand, SPPARgammaM2. This compound was a partial agonist in a cell-based transcriptional activity assay, with diminished adipogenic activity and an attenuated gene signature in cultured human adipocytes. X-ray cocrystallography studies demonstrated that, unlike rosiglitazone, SPPARgammaM2 did not interact with the Tyr473 residue located within helix 12 of the ligand binding domain (LBD). Instead, SPPARgammaM2 was found to bind to and activate human PPARgamma in which the Tyr473 residue had been mutated to alanine (hPPARgammaY473A), with potencies similar to those observed with the wild-type receptor (hPPARgammaWT). In additional studies, we found that the intrinsic binding and functional potencies of structurally distinct SPPARgammaMs were not diminished by the Y473A mutation, whereas those of various thiazolidinedione (TZD) and non-TZD PPARgamma full agonists were reduced in a correlative manner. These results directly demonstrate the important role of Tyr473 in mediating the interaction of full agonists but not SPPARgammaMs with the PPARgamma LBD, thereby providing a precise molecular determinant for their differing pharmacologies.


Assuntos
PPAR gama/metabolismo , Tirosina/metabolismo , Humanos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...