Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 12(43): 49182-49191, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32972133

RESUMO

The insertion and removal of Li+ ions into Li-ion battery electrodes can lead to severe mechanical fatigue because of the repeated expansion and compression of the host lattice during electrochemical cycling. In particular, the lithium manganese oxide spinel (LiMn2O4, LMO) experiences a significant surface stress contribution to electrode chemomechanics upon delithiation that is asynchronous with the potentials where bulk phase transitions occur. In this work, we probe the stress evolution and resulting mechanical fracture from LMO delithation using an integrated approach consisting of cyclic voltammetry, electron microscopy, and density functional theory (DFT) calculations. High-rate electrochemical cycling is used to exacerbate the mechanical deficiencies of the LMO electrode and demonstrates that mechanical degradation leads to slowing of delithiation and lithiation kinetics. These observations are further supported through the identification of significant fracturing in LMO using scanning electron microscopy. DFT calculations are used to model the mechanical response of LMO surfaces to electrochemical delithiation and suggest that particle fracture is unlikely in the [001] direction because of tensile stresses from delithiation near the (001) surface. Transmission electron microscopy and electron backscatter diffraction of the as-cycled LMO particles further support the computational analyses, indicating that particle fracture instead tends to preferentially occur along the {111} planes. This joint computational and experimental analysis provides molecular-level details of the chemomechanical response of the LMO electrode to electrochemical delithiation and how surface stresses may lead to particle fracture in Li-ion battery electrodes.

3.
Phys Chem Chem Phys ; 21(17): 8897-8905, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30982834

RESUMO

Observations of the initial lithiation of NiO electrodes demonstrate how to seed conversion reactions using interfaces in a thin film Ni/NiO bilayer architecture. Operando X-ray reflectivity (XRR) reveals that structural changes in a NiO film begin at potentials near the theoretical reduction potential (1.8-2.0 V) with detectable lithiation of both the buried Ni/NiO interface and the outer NiO surface that occur prior to the reaction of the NiO film. This initial conversion reaction is most pronounced in ultrathin NiO films (∼20 Å) with only small changes to the NiO film surface for thicker films (∼67 Å). The limited reactivity of thicker NiO films probed using operando grazing incidence small-angle X-ray scattering (GISAXS) shows the growth of nanoparticles at the electrode/electrolyte interface during initial lithium ion insertion, with a 16-20 Å average radius. Ex situ X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and scanning transmission electron microscopy/electron energy loss spectroscopy (STEM/EELS) confirm our conclusions about the morphological changes accompanying initial stage of lithiation in these conversion reaction electrodes. The present study reveals the interconnected challenges of solid-solid transitions, overpotentials, interfacial nucleation and kinetics, and transition metal dissolution in conversion-type electrodes that are critical for their use as electrodes in lithium-ion batteries.

4.
Microsc Microanal ; 24(3): 214-220, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29877170

RESUMO

Cutting-edge research on materials for lithium ion batteries regularly focuses on nanoscale and atomic-scale phenomena. Electron energy-loss spectroscopy (EELS) is one of the most powerful ways of characterizing composition and aspects of the electronic structure of battery materials, particularly lithium and the transition metal mixed oxides found in the electrodes. However, the characteristic EELS signal from battery materials is challenging to analyze when there is strong overlap of spectral features, poor signal-to-background ratios, or thicker and uneven sample areas. A potential alternative or complementary approach comes from utilizing the valence EELS features (<20 eV loss) of battery materials. For example, the valence EELS features in LiCoO2 maintain higher jump ratios than the Li-K edge, most notably when spectra are collected with minimal acquisition times or from thick sample regions. EELS maps of these valence features give comparable results to the Li-K edge EELS maps of LiCoO2. With some spectral processing, the valence EELS maps more accurately highlight the morphology and distribution of LiCoO2 than the Li-K edge maps, especially in thicker sample regions. This approach is beneficial for cases where sample thickness or beam sensitivity limit EELS analysis, and could be used to minimize electron dosage and sample damage or contamination.

5.
ACS Nano ; 11(10): 10321-10329, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28933819

RESUMO

Integrating plasmonic materials into semiconductor media provides a promising approach for applications such as photosensing and solar energy conversion. The resulting structures introduce enhanced light-matter interactions, additional charge trap states, and efficient charge-transfer pathways for light-harvesting devices, especially when an intimate interface is built between the plasmonic nanostructure and semiconductor. Herein, we report the development of plasmonic photodetectors using Au@MoS2 heterostructures-an Au nanoparticle core that is encapsulated by a CVD-grown multilayer MoS2 shell, which perfectly realizes the intimate and direct interfacing of Au and MoS2. We explored their favorable applications in different types of photosensing devices. The first involves the development of a large-area interdigitated field-effect phototransistor, which shows a photoresponsivity ∼10 times higher than that of planar MoS2 transistors. The other type of device geometry is a Si-supported Au@MoS2 heterojunction gateless photodiode. We demonstrated its superior photoresponse and recovery ability, with a photoresponsivity as high as 22.3 A/W, which is beyond the most distinguished values of previously reported similar gateless photodetectors. The improvement of photosensing performance can be a combined result of multiple factors, including enhanced light absorption, creation of more trap states, and, possibly, the formation of interfacial charge-transfer transition, benefiting from the intimate connection of Au and MoS2.

6.
Phys Chem Chem Phys ; 19(30): 20029-20039, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28722735

RESUMO

X-ray reflectivity and transmission electron microscopy (TEM) were used to characterize the morphological changes in thin film electrodes with alternating Ni and NiO layers during lithiation as a function of the Ni buffer layer thickness. Complete lithiation of the active NiO layers occurs only when the thickness of the Ni/NiO bilayers are less than 75 Å - a threshold value that is determined by the sum of the Ni quantity in the Ni/NiO bilayer of the multilayer stack. Thicker Ni/NiO bilayers present a kinetic barrier for lithium ion diffusion inside the stack resulting in partial lithiation of the multilayer electrodes in which only the top NiO layer lithiates. Lithiation of NiO layers in a multilayer stack also leads to an interface-specific reaction that is observed to increase the thicknesses of adjacent Ni layers by 3-4 Å and is associated with the formation of a low-density Li2O layer, corresponding to an interfacially-driven phase separation of the NiO. Rate dependent cyclic voltammetry studies reveal a linear relation between the peak current and scan rate suggesting that the lithiation kinetics are controlled by charge transfer resistance at the liquid-solid interface.

7.
ACS Appl Mater Interfaces ; 8(41): 27720-27729, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27700026

RESUMO

Recent reports have indicated that a manganese oxide spinel component, when embedded in a relatively small concentration in layered xLi2MnO3·(1-x)LiMO2 (M = Ni, Mn, or Co) electrode systems, can act as a stabilizer that increases their capacity, rate capability, cycle life, and first-cycle efficiency. These findings prompted us to explore the possibility of exploiting lithiated cobalt oxide spinel stabilizers by taking advantage of (1) the low mobility of cobalt ions relative to that of manganese and nickel ions in close-packed oxides and (2) their higher potential (∼3.6 V vs Li0) relative to manganese oxide spinels (∼2.9 V vs Li0) for the spinel-to-lithiated spinel electrochemical reaction. In particular, we revisited the structural and electrochemical properties of lithiated spinels in the LiCo1-xNixO2 (0 ≤ x ≤ 0.2) system, first reported almost 25 years ago, by means of high-resolution (synchrotron) X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance spectroscopy, electrochemical cell tests, and theoretical calculations. The results provide a deeper understanding of the complexity of intergrown layered/lithiated spinel LiCo1-xNixO2 structures when prepared in air between 400 and 800 °C and the impact of structural variations on their electrochemical behavior. These structures, when used in low concentrations, offer the possibility of improving the cycling stability, energy, and power of high energy (≥3.5 V) lithium-ion cells.

8.
Nat Commun ; 5: 5045, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25434582

RESUMO

Epitaxial heterostructures with precise registry between crystal layers play a key role in electronics and optoelectronics. In a close analogy, performance of nanocrystal (NC) based devices depends on the perfection of interfaces formed between NC layers. Here we systematically study the epitaxial growth of NC layers for the first time to enable the fabrication of coherent NC layers. NC epitaxy reveals an exceptional strain tolerance. It follows a universal island size scaling behaviour and shows a strain-driven transition from layer-by-layer to Stranski-Krastanov growth with non-trivial island height statistics. Kinetic bottlenecks play an important role in NC epitaxy, especially in the transition from sub-monolayer to multilayer coverage and the epitaxy of NCs with anisotropic shape. These findings provide a foundation for the rational design of epitaxial structures in a fundamentally and practically important size regime between atomic and microscopic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...