Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 9(1): 190, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484273

RESUMO

Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes listeriosis, a serious foodborne illness. In the nature-to-human transmission route, Lm can prosper in various ecological niches. Soil and decaying organic matter are its primary reservoirs. Certain clonal complexes (CCs) are over-represented in food production and represent a challenge to food safety. To gain new understanding of Lm adaptation mechanisms in food, the genetic background of strains found in animals and environment should be investigated in comparison to that of food strains. Twenty-one partners, including food, environment, veterinary and public health laboratories, constructed a dataset of 1484 genomes originating from Lm strains collected in 19 European countries. This dataset encompasses a large number of CCs occurring worldwide, covers many diverse habitats and is balanced between ecological compartments and geographic regions. The dataset presented here will contribute to improve our understanding of Lm ecology and should aid in the surveillance of Lm. This dataset provides a basis for the discovery of the genetic traits underlying Lm adaptation to different ecological niches.


Assuntos
Doenças Transmitidas por Alimentos , Listeria monocytogenes , Listeriose , Animais , Ecossistema , Doenças Transmitidas por Alimentos/microbiologia , Listeria monocytogenes/genética , Listeriose/epidemiologia , Listeriose/microbiologia
3.
mSphere ; 6(4): e0038321, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34232074

RESUMO

Listeria monocytogenes is a foodborne pathogen and a resilient environmental saprophyte. Dairy farms are a reservoir of L. monocytogenes, and strains can persist on farms for years. Here, we sequenced the genomes of 250 L. monocytogenes isolates to investigate the persistence and mobile genetic elements (MGEs) of Listeria strains inhabiting dairy farms. We performed a single-nucleotide polymorphism (SNP)-based phylogenomic analysis to identify 14 monophyletic clades of L. monocytogenes persistent on the farms for ≥6 months. We found that prophages and other mobile genetic elements were, on average, more numerous among isolates in persistent than nonpersistent clades, and we demonstrated that resistance genes against bacitracin, arsenic, and cadmium were significantly more prevalent among isolates in persistent than nonpersistent clades. We identified a diversity of mobile elements among the 250 farm isolates, including three novel plasmids, three novel transposons, and a novel prophage harboring cadmium resistance genes. Several of the mobile elements we identified in Listeria were identical to the mobile elements of enterococci, which is indicative of recent transfer between these genera. Through a genome-wide association study, we discovered that three putative defense systems against invading prophages and plasmids were negatively associated with persistence on farms. Our findings suggest that mobile elements support the persistence of L. monocytogenes on dairy farms and that L. monocytogenes inhabiting the agroecosystem is a potential reservoir of mobile elements that may spread to the food industry. IMPORTANCE Animal-derived raw materials are an important source of L. monocytogenes in the food industry. Knowledge of the factors contributing to the pathogen's transmission and persistence on farms is essential for designing effective strategies against the spread of the pathogen from farm to fork. An increasing body of evidence suggests that mobile genetic elements support the adaptation and persistence of L. monocytogenes in the food industry, as these elements contribute to the dissemination of genes encoding favorable phenotypes, such as resilience against biocides. Understanding of the role of farms as a potential reservoir of these elements is needed for managing the transmission of mobile elements across the food chain. Because L. monocytogenes coinhabits the farm ecosystem with a diversity of other bacterial species, it is important to assess the degree to which genetic elements are exchanged between Listeria and other species, as such exchanges may contribute to the rise of novel resistance phenotypes.


Assuntos
Antibacterianos/farmacologia , Bacitracina/farmacologia , Indústria de Laticínios/estatística & dados numéricos , Sequências Repetitivas Dispersas/genética , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/genética , Metais Pesados/farmacologia , Animais , Bovinos , Genoma Bacteriano , Listeria monocytogenes/classificação , Filogenia , Polimorfismo de Nucleotídeo Único , Prófagos/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
4.
Front Microbiol ; 10: 1049, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156582

RESUMO

Packaged raw milk contaminated with Yersinia pseudotuberculosis mediated a large yersiniosis outbreak in southern Finland in 2014. The outbreak was traced back to a single dairy farm in southern Finland. Here we explore risk factors leading to the outbreak through epidemiologic investigation of the outbreak farm and through genomic and phenotypic characterization of the farm's outbreak and non-outbreak associated Y. pseudotuberculosis strains. We show that the outbreak strain persisted on the farm throughout the 7-month study, whereas the non-outbreak strains occurred sporadically. Phylogenomic analysis illustrated that the outbreak strain was related to previously published genomes of wild animal isolates from Finland, implying that wild animals were a potential source of the outbreak strain to the farm. We observed allelic differences between the farm's outbreak and non-outbreak strains in several genes associated with virulence, stress response and biofilm formation, and found that the outbreak strain formed biofilm in vitro and maintained better growth fitness during cold stress than the non-outbreak strains. Finally, we demonstrate the rapid growth of the outbreak strain in packaged raw milk during refrigerated storage. This study provides insight of the risk factors leading to the Y. pseudotuberculosis outbreak, highlights the importance of pest control to avoid the spread of pathogens from wild to domestic animals, and demonstrates that the cold chain is insufficient as the sole risk management strategy to control Y. pseudotuberculosis risk associated with raw drinking milk.

5.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709824

RESUMO

Shiga toxin-producing Escherichia coli (STEC) and Campylobacter jejuni are notable health hazards associated with the consumption of raw milk. These bacteria may colonize the intestines of asymptomatic cattle and enter bulk tank milk via fecal contamination during milking. We studied the frequency of STEC O157:H7 and C. jejuni contamination in tank milk (n = 785) and the in-line milk filters of milking machines (n = 631) versus the frequency of isolation from cattle feces (n = 257) on three Finnish dairy farms for 1 year. Despite simultaneous isolation of STEC O157:H7 (17%) or C. jejuni (53%) from cattle, these bacteria were rarely isolated from milk filters (2% or <1%, respectively) and milk (0%). As revealed by phylogenomics, one STEC O157:H7 strain at a time was detected on each farm and persisted for ≤12 months despite rigorous hygienic measures. C. jejuni strains of a generalist sequence type (ST-883 and ST-1080) persisted in the herds for ≥11 months, and several other C. jejuni types were detected sporadically. The stx gene carried by STEC was detected more frequently from milk filters (37%) than from milk (7%), suggesting that milk filters are more suitable sampling targets for monitoring than milk. A questionnaire of on-farm practices suggested lower stx contamination of milk when major cleansing in the barn, culling, or pasturing of dairy cows was applied, while a higher average outdoor temperature was associated with higher stx contamination. Because pathogen contamination occurred despite good hygiene and because pathogen detection from milk and milk filters proved challenging, we recommend heat treatment for raw milk before consumption.IMPORTANCE The increased popularity of raw milk consumption has created demand for relaxing legislation, despite the risk of contamination by pathogenic bacteria, notably STEC and C. jejuni However, the epidemiology of these milk-borne pathogens on the herd level is still poorly understood, and data are lacking on the frequency of milk contamination on farms with cattle shedding these bacteria in their feces. This study suggests (i) that STEC contamination in milk can be reduced, but not prevented, by on-farm hygienic measures while fecal shedding is observable, (ii) that milk filters are more suitable sampling targets for monitoring than milk although pathogen detection from both sample matrices may be challenging, and (iii) that STEC and C. jejuni genotypes may persist in cattle herds for several months. The results can be utilized in developing and targeting pathogen monitoring and risk management on the farm level and contributed to the revision of Finnish legislation in 2017.


Assuntos
Campylobacter jejuni/isolamento & purificação , Fezes/microbiologia , Microbiologia de Alimentos , Leite/microbiologia , Escherichia coli Shiga Toxigênica/isolamento & purificação , Animais , Campylobacter jejuni/classificação , Campylobacter jejuni/genética , Bovinos , Indústria de Laticínios/instrumentação , Indústria de Laticínios/métodos , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , Fazendas , Feminino , Finlândia , Genômica , Genótipo , Estudos Longitudinais , Tipagem de Sequências Multilocus , Filogenia , Fatores de Risco , Toxina Shiga/genética , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Sequenciamento Completo do Genoma
6.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29222098

RESUMO

The molecular epidemiology of Listeria monocytogenes was investigated in a longitudinal study of three Finnish dairy farms during 2013 to 2016. A total of 186 bulk tank milk (BTM), 224 milk filter sock (MFS), and 1,702 barn environment samples were analyzed, and isolates of L. monocytogenes were genotyped using pulsed-field gel electrophoresis. L. monocytogenes occurred throughout the year in all sample types, and the prevalence in MFS increased significantly during the indoor season. L. monocytogenes was more prevalent in MFS (29%) than in BTM (13%) samples. However, the prevalence of L. monocytogenes varied more between farms in samples of MFS (13 to 48%) than in BTM (10 to 16%). For each farm, the L. monocytogenes genotypes detected were classified by persistence (defined as persistent if isolated from ≥3 samples during ≥6 months) and predominance (defined as predominant if >5% prevalence on at least one farm visit). The prevalence of sporadic genotypes was 4 to 5% on all three farms. In contrast, the prevalence of persistent predominant genotypes varied between farms by 4% to 16%. The highest prevalence of persistent predominant genotypes was observed on the farm with the poorest production hygiene. Persistent predominant genotypes were most prevalent on feeding surfaces, water troughs, and floors. Genotypes isolated from the milking system or from cow udders had a greater relative risk of occurring in BTM and MFS than genotypes that only occurred elsewhere in the farm, supporting the hypothesis that L. monocytogenes is transmitted to milk from contamination on the udder surface or in the milking equipment.IMPORTANCEListeria monocytogenes is a ubiquitous environmental bacterium and the causative agent of a serious foodborne illness, listeriosis. Dairy products are common vehicles of listeriosis, and dairy cattle farms harbor L. monocytogenes genotypes associated with human listeriosis outbreaks. Indeed, dairy cattle farms act as a reservoir of L. monocytogenes, and the organism is frequently detected in bulk tank milk (BTM) and in the feces of clinically healthy cows. The ecology of L. monocytogenes in the farm environment is complex and poorly understood. Isolates of the same L. monocytogenes genotype can occur in the farm for years, but the factors contributing to the persistence of genotypes on dairy farms are unknown. Knowledge of the persistence patterns and contamination routes of L. monocytogenes on dairy farms can improve management of the contamination pressure in the farm environment and aid in the development of focused control strategies to reduce BTM contamination.


Assuntos
Reservatórios de Doenças/veterinária , Fezes/microbiologia , Genótipo , Listeria monocytogenes/genética , Listeriose/veterinária , Leite/microbiologia , Animais , Bovinos , DNA Bacteriano/genética , Indústria de Laticínios , Reservatórios de Doenças/microbiologia , Eletroforese em Gel de Campo Pulsado , Fazendas , Feminino , Finlândia/epidemiologia , Humanos , Listeria monocytogenes/isolamento & purificação , Listeriose/epidemiologia , Listeriose/microbiologia , Estudos Longitudinais , Glândulas Mamárias Animais/microbiologia
7.
Int J Food Microbiol ; 261: 1-10, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28850852

RESUMO

The increased availability of packaged raw drinking milk necessitates the investigation of the occurrence and growth of Listeria monocytogenes in raw milk during distribution and storage. The occurrence of L. monocytogenes in 105 retailed raw milk bottles, 115 bulk tank milk samples, 23 in-line milk filter socks and in 50 environmental samples collected from an on-farm dairy establishment were investigated. Growth of inoculated low-level L. monocytogenes contamination was also investigated in two types of raw milk packaging, namely in 1-litre plastic bottles and 3-litre bag-in-boxes, both stored at three different storage temperatures of 6, 8 and 10°C. The occurrence of L. monocytogenes was higher (4.8%) in bottled raw milk stored until the use-by-date of the package compared to fresh bulk tank milk (1.7%). L. monocytogenes counts were ≤13CFU/ml in bottled raw milk and ≤1CFU/ml in bulk tank milk. L. monocytogenes was not detected in the packaging facility, but occurred very frequently (39%) in the milk filter socks. Subtyping of L. monocytogenes isolates using pulsed-field gel-electrophoresis revealed seven pulsotypes, of which two occurred in multiple samples. Targeted inoculum levels of 1-2CFU/ml yielded L. monocytogenes counts≥100CFU/ml within seven days of storage in 22% of the raw milk packages stored at 6°C, and in all of the raw milk packages stored at 8°C. The frequent occurrence of L. monocytogenes in raw milk and the ability of a low-level L. monocytogenes contamination to grow at refrigeration temperatures highlight the importance of consumer education regarding the appropriate raw milk storage and handling.


Assuntos
Contaminação de Alimentos/análise , Listeria monocytogenes/crescimento & desenvolvimento , Leite/microbiologia , Animais , Contagem de Colônia Microbiana , Eletroforese em Gel de Campo Pulsado , Microbiologia de Alimentos , Embalagem de Alimentos/métodos , Armazenamento de Alimentos , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...