Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; : e202400080, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619283

RESUMO

The 5-HT2A receptor is a molecular target of high pharmacological importance. Ligands of this protein, particularly atypical antipsychotics, are useful in the treatment of numerous mental disorders, including schizophrenia and major depressive disorder. Structure-based virtual screening using a 5-HT2A receptor complex was performed to identify novel ligands for the 5-HT2A receptor, serving as potential antidepressants. From the Enamine screening library, containing over 4 million compounds, 48 molecules were selected for subsequent experimental validation. These compounds were tested against the 5-HT2A receptor in radioligand binding assays. From the tested batch, six molecules were identified as ligands of the main molecular target and were forwarded to a more detailed in vitro profiling. This included radioligand binding assays at 5-HT1A, 5-HT7, and D2 receptors and functional studies at 5-HT2A receptors. These compounds were confirmed to show a binding affinity for at least one of the targets tested in vitro. The success rate for the inactive template-based screening reached 17 %, while it was 9 % for the active template-based screening. Similarity and fragment analysis indicated the structural novelty of the identified compounds. Pharmacokinetics for these molecules was determined using in silico approaches.

2.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762529

RESUMO

While cells in the human body function in an environment where the blood supply constantly delivers nutrients and removes waste, cells in conventional tissue culture well platforms are grown with a static pool of media above them and often lack maturity, limiting their utility to study cell biology in health and disease. In contrast, organ-chip microfluidic systems allow the growth of cells under constant flow, more akin to the in vivo situation. Here, we differentiated human induced pluripotent stem cells into dopamine neurons and assessed cellular properties in conventional multi-well cultures and organ-chips. We show that organ-chip cultures, compared to multi-well cultures, provide an overall greater proportion and homogeneity of dopaminergic neurons as well as increased levels of maturation markers. These organ-chips are an ideal platform to study mature dopamine neurons to better understand their biology in health and ultimately in neurological disorders.


Assuntos
Neurônios Dopaminérgicos , Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Células Cultivadas , Técnicas de Cultura de Órgãos
3.
Front Behav Neurosci ; 17: 1192076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600758

RESUMO

Introduction: Alcohol abuse is a risk factor for affective and cognitive disorders, with evidence indicating that adolescent-onset excessive drinking can result in long-term deficiencies in emotional regulation and cognition, with females more susceptible to the negative emotional and cognitive consequences of excessive alcohol consumption. However, our prior examination of the interactions between sex and the age of drinking-onset indicated minimal signs of anxiety-like behavior during alcohol withdrawal, which may have related to the concurrent anxiety testing of male and female subjects. Methods: The present study addressed this potential confound by assaying for alcohol withdrawal-induced negative affect separately in males and females and expanded our investigation to include measures of spatial and working memory. Results: Following 14 days of drinking under modified Drinking-in-the-Dark procedures (10, 20, and 40% alcohol v/v; 2 h/day), adolescent and adult binge-drinking mice of both sexes exhibited, respectively, fewer and more signs of negative affect in the light-dark shuttle-box and forced swim tests than their water-drinking counterparts. Adolescent-onset binge-drinking mice also exhibited signs of impaired working memory early during radial arm maze training during early alcohol withdrawal. When tested in late (30 days) withdrawal, only adult female binge-drinking mice buried more marbles than their water-drinking counterparts. However, adolescent-onset binge-drinking mice exhibited poorer spatial memory recall in a Morris water maze. Discussion: These findings indicate that a subchronic (14-day) binge-drinking history induces mild, age- and sex-selective, changes in negative affect and cognition of potential relevance to understanding individual variability in the etiology and treatment of alcohol abuse and alcohol use disorder.

4.
J Enzyme Inhib Med Chem ; 38(1): 2209828, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37184096

RESUMO

Schizophrenia is a chronic mental disorder that is not satisfactorily treated with available antipsychotics. The presented study focuses on the search for new antipsychotics by optimising the compound D2AAK3, a multi-target ligand of G-protein-coupled receptors (GPCRs), in particular D2, 5-HT1A, and 5-HT2A receptors. Such receptor profile may be beneficial for the treatment of schizophrenia. Compounds 1-16 were designed, synthesised, and subjected to further evaluation. Their affinities for the above-mentioned receptors were assessed in radioligand binding assays and efficacy towards them in functional assays. Compounds 1 and 10, selected based on their receptor profile, were subjected to in vivo tests to evaluate their antipsychotic activity, and effect on memory and anxiety processes. Molecular modelling was performed to investigate the interactions of the studied compounds with D2, 5-HT1A, and 5-HT2A receptors on the molecular level. Finally, X-ray study was conducted for compound 1, which revealed its stable conformation in the solid state.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamento farmacológico , Piperazina/farmacologia , Dopamina/uso terapêutico , Ligantes , Indazóis , Serotonina/uso terapêutico , Receptores de Serotonina , Antipsicóticos/farmacologia , Antipsicóticos/química , Receptor 5-HT1A de Serotonina/uso terapêutico
5.
Molecules ; 28(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37241951

RESUMO

The dopamine D2 receptor, which belongs to the family of G protein-coupled receptors (GPCR), is an important and well-validated drug target in the field of medicinal chemistry due to its wide distribution, particularly in the central nervous system, and involvement in the pathomechanism of many disorders thereof. Schizophrenia is one of the most frequent diseases associated with disorders in dopaminergic neurotransmission, and in which the D2 receptor is the main target for the drugs used. In this work, we aimed at discovering new selective D2 receptor antagonists with potential antipsychotic activity. Twenty-three compounds were synthesized, based on the scaffold represented by the D2AAK2 compound, which was discovered by our group. This compound is an interesting example of a D2 receptor ligand because of its non-classical binding to this target. Radioligand binding assays and SAR analysis indicated structural modifications of D2AAK2 that are possible to maintain its activity. These findings were further rationalized using molecular modeling. Three active derivatives were identified as D2 receptor antagonists in cAMP signaling assays, and the selected most active compound 17 was subjected to X-ray studies to investigate its stable conformation in the solid state. Finally, effects of 17 assessed in animal models confirmed its antipsychotic activity in vivo.


Assuntos
Antipsicóticos , Esquizofrenia , Animais , Esquizofrenia/tratamento farmacológico , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Antipsicóticos/química , Dopamina/uso terapêutico , Receptores Dopaminérgicos , Ensaio Radioligante , Receptores de Dopamina D3/uso terapêutico
6.
Eur J Med Chem ; 252: 115285, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37027998

RESUMO

Schizophrenia is a mental disorder with a complex pathomechanism involving many neurotransmitter systems. Among the currently used antipsychotics, classical drugs acting as dopamine D2 receptor antagonists, and drugs of a newer generation, the so-called atypical antipsychotics, can be distinguished. The latter are characterized by a multi-target profile of action, affecting, apart from the D2 receptor, also serotonin receptors, in particular 5-HT2A and 5-HT1A. Such profile of action is considered superior in terms of both efficacy in treating symptoms and safety. In the search for new potential antipsychotics of such atypical receptor profile, an attempt was made to optimize the arylpiperazine based virtual hit, D2AAK3, which in previous studies displayed an affinity for D2, 5-HT1A and 5-HT2A receptors, and showed antipsychotic activity in vivo. In this work, we present the design of D2AAK3 derivatives (1-17), their synthesis, and structural and pharmacological evaluation. The obtained compounds show affinities for the receptors of interest and their efficacy as antagonists/agonists towards them was confirmed in functional assays. For the selected compound 11, detailed structural studies were carried out using molecular modeling and X-ray methods. Additionally, ADMET parameters and in vivo antipsychotic activity, as well as influence on memory and anxiety processes were evaluated in mice, which indicated good therapeutic potential and safety profile of the studied compound.


Assuntos
Antipsicóticos , Esquizofrenia , Animais , Camundongos , Antipsicóticos/química , Receptor 5-HT2A de Serotonina , Receptores de Dopamina D2/química , Receptores de Serotonina , Esquizofrenia/tratamento farmacológico , Serotonina
7.
ChemMedChem ; 17(15): e202200238, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35610178

RESUMO

Schizophrenia is a complex disease which is best treated with multitarget drugs, such as atypical antipsychotics. Previously, using structure-based virtual screening, we found a virtual hit, D2AAK1, with nanomolar affinity for dopamine and serotonin receptors important in schizophrenia pharmacotherapy. As a part of an optimization campaign of D2AAK1, we obtained 17 derivatives that also display a multitarget profile. Selected compounds were tested against off-targets in schizophrenia, i. e., histamine H1 receptor and muscarinic M1 receptor, and these did not display considerable affinity for these receptors. The two most promising compounds were subjected to behavioral studies. These compounds decreased amphetamine-induced hyperactivity in mice which indicates their antipsychotic potential. The compounds did not interfere with the memory consolidation in mice, as determined in the passive avoidance test. The favorable pharmacological profile of these compounds was rationalized using molecular modeling.


Assuntos
Antipsicóticos , Esquizofrenia , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Camundongos , Receptores Muscarínicos , Receptores de Serotonina , Esquizofrenia/tratamento farmacológico
8.
Neurochem Res ; 47(6): 1778-1789, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35380398

RESUMO

The susceptibility of neurons to free radical toxicity partially underlies the pathomechanism of neurodegenerative diseases. On the other hand, excitotoxicity also contributes to neurodegeneration. Our previous studies demonstrated the unique properties of D2AAK1 as a potent multi-target ligand of aminergic G protein-coupled receptors (GPCRs) which dose-dependently stimulates growth, survival of neurons, and promotes their integrity. The aim of our study was to investigate the potential neuroprotective and antioxidant properties of D2AAK1. Here we show that D2AAK1 activates cellular and molecular neuroprotective mechanisms, prevents cells from excitotoxicity and free radicals. Furthermore, D2AAK1 induced no genotoxic events in neuronal cells in vitro. Most importantly, D2AAK1 protects neurons from the effects of high temperatures by molecular chaperones activation. The D2AAK1 effects on selected organs was further evaluated in mice and no pathological changes were observed after chronic administration. In the light of our experiments, D2AAK1 can be further developed into a potential treatment for neurodegenerative diseases, in particular related to memory impairment. In summary, D2AAK1 has promising properties for potential treatments of neurodegenerative diseases.


Assuntos
Antipsicóticos , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antipsicóticos/farmacologia , Camundongos , Doenças Neurodegenerativas/patologia , Neurônios , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
9.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209087

RESUMO

Long-chain arylpiperazine scaffold is a versatile template to design central nervous system (CNS) drugs that target serotonin and dopamine receptors. Here we describe the synthesis and biological evaluation of ten new arylpiperazine derivatives designed to obtain an affinity profile at serotonin 5-HT1A, 5-HT2A, 5-HT7 receptor, and dopamine D2 receptor of prospective drugs to treat the core symptoms of autism spectrum disorder (ASD) or psychosis. Besides the structural features required for affinity at the target receptors, the new compounds incorporated structural fragments with antioxidant properties to counteract oxidative stress connected with ASD and psychosis. All the new compounds showed CNS MultiParameter Optimization score predictive of desirable ADMET properties and cross the blood-brain barrier. We identified compound 12a that combines an affinity profile compatible with antipsychotic activity (5-HT1AKi = 41.5 nM, 5-HT2AKi = 315 nM, 5-HT7Ki = 42.5 nM, D2Ki = 300 nM), and compound 9b that has an affinity profile consistent with studies in the context of ASD (5-HT1AKi = 23.9 nM, 5-HT2AKi = 39.4 nM, 5-HT7Ki = 45.0 nM). Both compounds also had antioxidant properties. All compounds showed low in vitro metabolic stability, the only exception being compound 9b, which might be suitable for studies in vivo.


Assuntos
Técnicas de Química Sintética , Desenho de Fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Antagonistas dos Receptores de Dopamina D2 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Receptores Dopaminérgicos/química , Receptores Dopaminérgicos/metabolismo , Receptores de Serotonina/química , Receptores de Serotonina/metabolismo , Relação Estrutura-Atividade
10.
Pharmacol Rep ; 74(2): 406-424, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35064921

RESUMO

BACKGROUND: Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays one of the hot topics in drug discovery. In particular, allosteric modulators of D2 receptor have been proposed as potential modern therapeutics to treat schizophrenia and Parkinson's disease. METHODS: To address some subtle structural and stereochemical aspects of allosteric modulation of D2 receptor, we performed extensive in silico studies of both enantiomers of two compounds (compound 1 and compound 2), and one of them (compound 2) was synthesized as a racemate in-house and studied in vitro. RESULTS: Our molecular dynamics simulations confirmed literature reports that the R enantiomer of compound 1 is a positive allosteric modulator of the D2L receptor, while its S enantiomer is a negative allosteric modulator. Moreover, based on the principal component analysis (PCA), we hypothesized that both enantiomers of compound 2 behave as silent allosteric modulators, in line with our in vitro studies. PCA calculations suggest that the most pronounced modulator-induced receptor rearrangements occur at the transmembrane helix 7 (TM7). In particular, TM7 bending at the conserved P7.50 and G7.42 was observed. The latter resides next to the Y7.43, which is a significant part of the orthosteric binding site. Moreover, the W7.40 conformation seems to be affected by the presence of the positive allosteric modulator. CONCLUSIONS: Our work reveals that allosteric modulation of the D2L receptor can be affected by subtle ligand modifications. A change in configuration of a chiral carbon and/or minor structural modulator modifications are solely responsible for the functional outcome of the allosteric modulator.


Assuntos
Dopamina , Simulação de Dinâmica Molecular , Regulação Alostérica , Sítios de Ligação , Ligantes , Receptores Acoplados a Proteínas G
11.
ACS Chem Neurosci ; 12(8): 1313-1327, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33792287

RESUMO

Autism spectrum disorder (ASD) includes a group of neurodevelopmental disorders characterized by core symptoms such as impaired social interaction and communication, repetitive and stereotyped behaviors, and restricted interests. To date, there are no effective treatments for these core symptoms. Several studies have shown that the brain serotonin (5-HT) neurotransmission system is altered in both ASD patients and animal models of the disease. Multiple pieces of evidence suggest that targeting 5-HT receptors may treat the core symptoms of ASD and associated intellectual disabilities. In fact, stimulation of the 5-HT1A receptor reduces repetitive and restricted behaviors; blockade of the 5-HT2A receptor reduces both learning deficits and repetitive behavior, and activation of the 5-HT7 receptor improves cognitive performances and reduces repetitive behavior. On such a basis, we have designed novel arylpiperazine derivatives pursuing unprecedently reported activity profiles: dual 5-HT7/5-HT1A receptor agonist properties and mixed 5-HT7 agonist/5-HT1A agonist/5-HT2A antagonist properties. Seventeen new compounds were synthesized and tested in radioligand binding assay at the target receptors. We have identified the dual 5-HT1AR/5-HT7R agonists 8c and 29 and the mixed 5-HT1AR agonist/5-HT7R agonist/5-HT2AR antagonist 20b. These compounds are metabolically stable in vitro and have suitable central nervous system druglike properties.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Humanos , Receptor 5-HT1A de Serotonina , Receptores de Serotonina , Serotonina , Agonistas do Receptor de Serotonina/farmacologia , Comportamento Estereotipado
12.
Neurochem Int ; 146: 105016, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722679

RESUMO

Schizophrenia is a mental illness of not adequately understood causes that is not satisfactorily enough treated by current antipsychotics. In search for novel potential antipsychotics we performed structure-based virtual screening aimed to identify new dopamine D2 receptor antagonists. We found compound D2AAK3 with affinity to dopamine D2 receptor of 115 nM. D2AAK3 possesses additional nanomolar or low micromolar affinity to D1, D3, 5-HT1A, 5-HT2A and 5-HT7 receptors, which makes it a good hit for further development as a multifunctional ligand. The compound has also some affinity to M1 and H1 receptors. We used homology modeling, molecular docking and molecular dynamics to study interactions of D2AAK3 with its molecular targets at the molecular level. In behavioral studies D2AAK3 decreases amphetamine-induced hyperactivity (when compared to the amphetamine-treated group) measured as spontaneous locomotor activity in mice. In addition, passive avoidance test demonstrated that D2AAK3 improves memory consolidation after acute treatment in mice. Elevated plus maze tests indicated that D2AAK3 induces anxiogenic activity 30 min after acute treatment, whereas this effect has no longer been observed 60 min after administration of the studied compound in mice.


Assuntos
Antipsicóticos/administração & dosagem , Simulação por Computador , Antagonistas dos Receptores de Dopamina D2/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Agonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Antagonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Animais , Antipsicóticos/química , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Células CHO , Cricetulus , Antagonistas dos Receptores de Dopamina D2/química , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Ligantes , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Simulação de Acoplamento Molecular/métodos , Agonistas do Receptor 5-HT2 de Serotonina/química , Antagonistas do Receptor 5-HT2 de Serotonina/química
13.
Biomolecules ; 10(2)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102432

RESUMO

N-(2-hydroxyphenyl)-1-[3-(2-oxo-2,3-dihydro-1H-benzimidazol -1-yl)propyl]piperidine-4-carboxamide (D2AAK4) is a multitarget ligand of aminergic G protein-coupled receptors (GPCRs) identified in structure-based virtual screening. Here we present detailed in vitro, in silico and in vivo investigations of this virtual hit. D2AAK4 has an atypical antipsychotic profile and low affinity to off-targets. It interacts with aminergic GPCRs, forming an electrostatic interaction between its protonatable nitrogen atom and the conserved Asp 3.32 of the receptors. At the dose of 100 mg/kg D2AAK4 decreases amphetamine-induced hyperactivity predictive of antipsychotic activity, improves memory consolidation in passive avoidance test and has anxiogenic properties in elevated plus maze test (EPM). Further optimization of the virtual hit D2AAK4 will be aimed to balance its multitarget profile and to obtain analogs with anxiolytic activity.


Assuntos
Piperidinas/farmacologia , Animais , Antipsicóticos/farmacologia , Desenho de Fármacos , Humanos , Ligantes , Modelos Moleculares , Piperidinas/química , Receptores Acoplados a Proteínas G , Esquizofrenia/tratamento farmacológico , Relação Estrutura-Atividade
14.
J Nat Prod ; 83(1): 127-133, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31933369

RESUMO

Certain D2-like dopamine receptor (DR) agonists are useful therapeutically as antiparkinsonian drugs, whereas D2-like DR antagonists or partial agonists are proven effective as antipsychotics. Two isoquinoline derivatives, 1-(2'-bromobenzyl)-6,7-dihydroxy-N-methyl-tetrahydroisoquinoline (Br-BTHIQ, 1) and 1,2-demethyl-nuciferine (aporphine, 2), were herein synthesized, and their dopaminergic affinity in cloned human D2R, D3R, and D4R subtypes and their behavior as agonists/antagonists were evaluated. They showed affinity values (Ki) for hD2, hD3, and hD4 DR within the nanomolar range. The trends in affinity were hD4R ≫ hD3R > hD2R for Br-BTHIQ (1) and hD2R > hD4R > hD3R for 1,2-demethyl-nuciferine (2). The functional assays of cyclic adenosine monophosphate signaling at human D2R showed a partial agonist effect for Br-BTHIQ (1) and full agonist behavior for aporphine (2), with half maximal effective concentration values of 2.95 and 10.2 µM, respectively. Therefore, both isoquinolines 1 and 2 have emerged as lead molecules for the synthesis of new therapeutic drugs that ultimately may be useful to prevent schizophrenia and Parkinson's disease, respectively.


Assuntos
Aporfinas/química , AMP Cíclico/química , Agonistas de Dopamina/química , Tetra-Hidroisoquinolinas/farmacologia , Animais , Aporfinas/farmacologia , Humanos , Isoquinolinas/química , Estrutura Molecular , Tetra-Hidroisoquinolinas/química
15.
Med Chem ; 16(4): 517-530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31203804

RESUMO

BACKGROUND: Serotonin is an important biogenic amine and is implicated in wideranging physiological and physiopathological processes. Pharmacological manipulation of the serotoninergic system is believed to have a great therapeutic potential. OBJECTIVES: In order to identify selective ligands for 5-HT1A, 5-HT2A and 5-HT2C receptors two series of 4-substituted piperazine derivatives, bearing indolic or methyl indolic nuclei, were synthesized. METHODS: All the compounds, synthesized by standard solution methods, were evaluated for 5- HT1A, 5-HT2A and 5-HT2C receptors. The highest affine and selective compounds have been evaluated also on dopaminergic (D1 and D2) and adrenergic (α1A and α2A) receptors. RESULTS: Several of the newly synthesized molecules showed affinity in the nanomolar range for 5- HT1A, 5-HT2A and 5-HT2C receptors and moderate to no affinity for other relevant receptors (D1, D2, α1A and α2A). CONCLUSION: Compounds 7f and 10a showed a nanomolar affinity towards 5-HT1A with an in vitro pharmacologic profile compatible with antipsychotic drugs.


Assuntos
Indóis/química , Indóis/farmacologia , Receptores de Serotonina/metabolismo , Humanos , Indóis/metabolismo , Ligantes , Relação Estrutura-Atividade
16.
Bioorg Med Chem ; 27(16): 3551-3558, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31280999

RESUMO

From a collection containing more than 1500 academic compounds, in silico screening identified a hit for the human A1 adenosine receptor containing a new purine scaffold. To study the structure activity relationships of this new chemical series for adenosine receptors, a library of 24 purines was synthesized and tested in radioligand binding assays at human A1, A2A, A2B and A3 adenosine receptor subtypes. Fourteen molecules showed potent antagonism at A1, A3 or dual A1/A3 adenosine receptors. This purine scaffold is an important source for novel biochemical tools and/or therapeutic drugs.


Assuntos
Antagonistas de Receptores Purinérgicos P1/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
17.
Eur J Med Chem ; 180: 673-689, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31357129

RESUMO

Schizophrenia is a complex disease with not fully understood pathomechanism, involving many neurotransmitters and their receptors. This is why it is best treated with multi-target drugs, such as second generation antipsychotics. Here we present 5-substituted-3-(1-arylmethyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles (1-20) which are ligands of dopamine D2 and serotonin 5-HT1A and 5-HT2A receptors and display affinity in the nanomolar range. These compounds were designed as modifications of the virtual hit experimentally confirmed, D2AAK1, and synthesized from indole or 5-alkoxyindoles and N-substituted piperidin-4-ones in methanol in the presence of potassium hydroxide. Compound 9 was subjected to X-ray studies and it crystallizes in the centrosymmetric monoclinic space group P21/c with one molecule in an asymmetric unit. Three most potent compounds (5, 9 and 17) turned out to be antagonists of both D2 and 5-HT2A receptors what is beneficial for their potential application as antipsychotics. Compound 5 was subjected to behavioral studies and exhibited antipsychotic, pro-cognitive and antidepressant activity in appropriate mice models. Structure-activity relationships for compounds 1-20 were rationalized using molecular docking. It was found that, in general, bulky C5-alkoxy substituents at the indole moiety are not favorable as they direct towards aqueous environment of the extracellular vestibule. Keywords: antipsychotics; behavioral studies, G protein-coupled receptors; indole derivatives; multi-target compounds; schizophrenia.


Assuntos
Antipsicóticos/farmacologia , Indóis/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Migração Animal/efeitos dos fármacos , Animais , Antipsicóticos/síntese química , Antipsicóticos/química , Células CHO , Cricetulus , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Indóis/síntese química , Indóis/química , Ligantes , Masculino , Camundongos , Estrutura Molecular , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
18.
Med Chem ; 15(4): 341-351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30295192

RESUMO

BACKGROUND: Previous publications show that the addition of a phenolic antioxidant to an antifungal agent, considerably enhances the antifungal activity. OBJECTIVE: Synthesis of novel compounds combining phenolic units with linear or cyclic nitrogencontaining organic molecules with antioxidant/antifungal activity using methodologies previously developed in the group. METHODS: Several N- [1,2-dicyano-2- (arylidenamino) vinyl]-O-alkylformamidoximes 3 were synthesized and cyclized to 4,5-dicyano-N- (N´-alcoxyformimidoyl)-2-arylimidazoles 4 upon reflux in DMF, in the presence of manganese dioxide or to 6-cyano-8-arylpurines 5 when the reagent was refluxed in acetonitrile with an excess of triethylamine. These compounds were tested for their antioxidant activity by cyclic voltammetry, DPPH radical (DPPH•) assay and deoxyribose degradation assay. The minimum inhibitory concentration (MIC) of all compounds was evaluated against two yeast species, Saccharomyces cerevisiae and Candida albicans, and against bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram negative). Their cytotoxicity was evaluated in fibroblasts. RESULTS: Among the synthetised compounds, five presented higher antioxidant activity than reference antioxidant Trolox and from these compounds, four presented antifungal activity without toxic effects in fibroblasts and bacteria. CONCLUSION: Four novel compounds presented dual antioxidant/antifungal activity at concentrations that are not toxic to bacteria and fibroblasts. The active molecules can be used as an inspiration for further studies in this area.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Fenóis/química , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/toxicidade , Antioxidantes/síntese química , Antioxidantes/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Imidazóis/síntese química , Imidazóis/toxicidade , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade
19.
Molecules ; 23(10)2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282927

RESUMO

A selection of 1-amino-2-arylidenamine-1,2-(dicyano)ethenes 3 was synthesized and cyclized to 2-aryl-4,5-dicyano-1H-imidazoles 4 upon reflux in ethyl acetate/acetonitrile, in the presence of manganese dioxide. These compounds were tested for their antioxidant capacity by cyclic voltammetry, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and deoxyribose degradation assays. The minimum inhibitory concentration of all compounds was evaluated against two yeast species, Saccharomyces cerevisiae and Candida albicans. Their toxicity was tested in mammal fibroblasts. Among the synthesised compounds, two presented dual antioxidant/antifungal activity without toxic effects in fibroblasts. The new compounds synthesized in this work are potential biochemical tools and/or therapeutic drugs.


Assuntos
Antifúngicos/química , Antioxidantes/química , Compostos de Nitrogênio/química , Antifúngicos/síntese química , Antifúngicos/farmacologia , Antioxidantes/síntese química , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Imidazóis/química , Testes de Sensibilidade Microbiana , Compostos de Nitrogênio/síntese química , Compostos de Nitrogênio/farmacologia , Fenóis/síntese química , Fenóis/química , Picratos/química , Extratos Vegetais/química , Saccharomyces cerevisiae/efeitos dos fármacos , Relação Estrutura-Atividade
20.
Molecules ; 23(9)2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181442

RESUMO

Compound D2AAK1_3 was designed as a modification of the lead structure D2AAK1 (an in vivo active multi-target compound with nanomolar affinity to a number of aminergic GPCRs) and synthesized in the reaction of 5-ethoxyindole and 1-benzyl-4-piperidone. This compound has an affinity to the human dopamine D2 receptor with Ki of 151 nM. The aim of these studies was the structural and thermal characterization of the compound D2AAK1_3. In particular; X-ray studies; molecular docking and molecular dynamics as well as thermal analysis were performed. The studied compound crystallizes in orthorhombic system; in chiral space group P212121. The compound has a non-planar conformation. The studied compound was docked to the novel X-ray structure of the human dopamine D2 receptor in the inactive state (PDB ID: 6CM4) and established the main contact between its protonatable nitrogen atom and Asp (3.32) of the receptor. The obtained binding pose was stable in molecular dynamics simulations. Thermal stability of the compound was investigated using the TG-DSC technique in the air atmosphere, while TG-FTIR analyses in air and nitrogen atmospheres were also performed. The studied compound is characterized by good thermal stability. The main volatile products of combustion are the following gases: CO2; H2O toluene and CO while in the case of pyrolysis process in the FTIR spectra; the characteristic bands of NH3; piperidine and indole are additionally observed.


Assuntos
Indóis/química , Indóis/síntese química , Pirrolidinas/química , Pirrolidinas/síntese química , Receptores de Dopamina D2/metabolismo , Temperatura , Ligação Competitiva , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...