Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chall ; 7(1): 2200107, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618101

RESUMO

The research on porous materials for the selective capture of fluorinated gases (F-gases) is key to reduce their emissions. Here, the adsorption of difluoromethane (R-32), pentafluoroethane (R-125), and 1,1,1,2-tetrafluoroethane (R-134a) is studied in four metal-organic frameworks (MOFs: Cu-benzene-1,3,5-tricarboxylate, zeolitic imidazolate framework-8, MOF-177, and MIL-53(Al)) and in one zeolite (ZSM-5) with the aim to develop technologies for the efficient capture and separation of high global warming potential blends containing these gases. Single-component sorption equilibria of the pure gases are measured at three temperatures (283.15, 303.15, and 323.15 K) by gravimetry and correlated using the Tóth and Virial adsorption models, and selectivities toward R-410A and R-407F are determined by ideal adsorption solution theory. While at lower pressures, R-125 and R-134a are preferentially adsorbed in all materials, at higher pressures there is no selectivity, or it is shifted toward the adsorption R-32. Furthermore, at high pressures, MOF-177 shows the highest adsorption capacity for the three F-gases. The results presented here show that the utilization of MOFs, as tailored made materials, is promising for the development of new approaches for the selective capture of F-gases and for the separation of blends of these gases, which are used in commercial refrigeration.

2.
Water Res ; 144: 532-542, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30081335

RESUMO

Production of bacterial lipid-based biofuels using inexpensive substrates, as wastes, is an emerging approach. In this work, a selective process using carbon feast-famine cycles was applied to obtain an indigenous microbial community of hydrocarbon-degrading and lipid-accumulating bacteria, using a real lubricant-based wastewater as carbon source. In the conditions applied, the enriched bacterial community, dominated by members of the genus Rhodococcus, Pseudomonas and Acinetobacter, was able to degrade almost all hydrocarbons present in the wastewater within 24 h' incubation and to accumulate, although in low levels, triacylglycerol (TAG) (<5% of cell dry weight (CDW)) and polyhydroxyalkanoates (PHA) (3.8% ±â€¯1.1% of the CDW) as well as an unknown lipid (29% ±â€¯6% of CDW), presumably a wax ester-like compound. The influence of culture conditions, namely carbon and nitrogen concentrations (and C/N ratio) and cultivation time, on the amount and profile of produced storage compounds was further assessed using a statistical approach based on a central composite circumscribed design and surface response methodology. The regression analysis of the experimental design revealed that only nitrogen concentration and C/N ratio are significant for neutral lipid biosynthesis (p < 0.05). Maximum neutral lipid content, i.e. 33% (CDW basis), was achieved for the lowest carbon and nitrogen concentrations evaluated (10 g COD L-1 and 0.02 g N L-1). PHA accounted for less than 5% of CDW. In these conditions, neutral lipid content was mainly composed by TAG, about 70% (w/w). TAG precursors, namely monoacylglycerols (MAG), diacylglycerols (DAG) and fatty acids (FA), accounted for 22% of total neutral lipids and WE for about 7%. Nevertheless, according to the applied response surface model, further improvement of neutral lipids content is still possible if even lower nitrogen concentrations are used. The fatty acids detected in TAG extracts ranged from myristic acid (C14:0) to linoleic acid (C18:2), being the most abundant palmitic acid (C16:0), stearic acid (C18:0) and oleic acid (C18:1). This study shows the feasibility of combining treatment of hydrocarbon contaminated wastewater, herein demonstrated for lubricant-based wastewater, with the production of bacterial neutral lipids using open mixed bacterial communities. This approach can decrease the costs associated to both processes and contribute to a more sustainable waste management and production of lipid-based biofuels.


Assuntos
Biocombustíveis , Lipídeos/biossíntese , Microbiota/fisiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Carbono/metabolismo , Ácidos Graxos/metabolismo , Hidrocarbonetos/metabolismo , Lubrificantes/química , Lubrificantes/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Rhodococcus/metabolismo , Triglicerídeos/metabolismo , Eliminação de Resíduos Líquidos/instrumentação
3.
Biochim Biophys Acta ; 1857(8): 1039-1067, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27044012

RESUMO

Acquisition of energy is central to life. In addition to the synthesis of ATP, organisms need energy for the establishment and maintenance of a transmembrane difference in electrochemical potential, in order to import and export metabolites or to their motility. The membrane potential is established by a variety of membrane bound respiratory complexes. In this work we explored the diversity of membrane respiratory chains and the presence of the different enzyme complexes in the several phyla of life. We performed taxonomic profiles of the several membrane bound respiratory proteins and complexes evaluating the presence of their respective coding genes in all species deposited in KEGG database. We evaluated 26 quinone reductases, 5 quinol:electron carriers oxidoreductases and 18 terminal electron acceptor reductases. We further included in the analyses enzymes performing redox or decarboxylation driven ion translocation, ATP synthase and transhydrogenase and we also investigated the electron carriers that perform functional connection between the membrane complexes, quinones or soluble proteins. Our results bring a novel, broad and integrated perspective of membrane bound respiratory complexes and thus of the several energetic metabolisms of living systems. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Archaea/genética , Proteínas Arqueais/genética , Bactérias/genética , Proteínas de Bactérias/genética , Membrana Celular/química , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Quinona Redutases/genética , Quinona Redutases/metabolismo , Quinonas/metabolismo
4.
Biochim Biophys Acta ; 1857(7): 928-37, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26711319

RESUMO

Respiratory complex I couples NADH:quinone oxidoreduction to ion translocation across the membrane, contributing to the buildup of the transmembrane difference of electrochemical potential. H(+) is well recognized to be the coupling ion of this system but some studies suggested that this role could be also performed by Na(+). We have previously observed NADH-driven Na(+) transport opposite to H(+) translocation by menaquinone-reducing complexes I, which indicated a Na(+)/H(+) antiporter activity in these systems. Such activity was also observed for the ubiquinone-reducing mitochondrial complex I in its deactive form. The relation of Na(+) with complex I may not be surprising since the enzyme has three subunits structurally homologous to bona fide Na(+)/H(+) antiporters and translocation of H(+) and Na(+) ions has been described for members of most types of ion pumps and transporters. Moreover, no clearly distinguishable motifs for the binding of H(+) or Na(+) have been recognized yet. We noticed that in menaquinone-reducing complexes I, less energy is available for ion translocation, compared to ubiquinone-reducing complexes I. Therefore, we hypothesized that menaquinone-reducing complexes I perform Na(+)/H(+) antiporter activity in order to achieve the stoichiometry of 4H(+)/2e(-). In agreement, the organisms that use ubiquinone, a high potential quinone, would have kept such Na(+)/H(+) antiporter activity, only operative under determined conditions. This would imply a physiological role(s) of complex I besides a simple "coupling" of a redox reaction and ion transport, which could account for the sophistication of this enzyme. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/ultraestrutura , Bombas de Próton/química , Bombas de Próton/ultraestrutura , Sódio/química , Transporte de Elétrons , Ativação Enzimática , Modelos Químicos , Simulação de Dinâmica Molecular , Oxirredução , Conformação Proteica , Prótons , Espécies Reativas de Oxigênio/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...