Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycobiology ; 52(3): 145-159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948450

RESUMO

Eritadenine from shiitake mushroom is a secondary metabolite with hypocholesterolemic, hypotensive and antiparasitic properties, thus promising for pharmaceutical and agricultural applications. Eritadenine is obtained from submerged mycelial cultures of shiitake, but the actual yields remain unsatisfactory to explore potential applications or industrial-scale production. In this study, green and blue LED lights were tested to increase yields of eritadenine in submerged cultures of shiitake. Notably, blue LEDs increased yields by 13-14 times, reaching 165.7 mg/L, compared to darkness (11.2 mg/L) and green light (12.1 mg/L) (p < 0.05, Tukey test). Nitrogen sources yeast extract (YE) and peptone (at 2 g/L) increased eritadenine production. YE promoted 22.6 mg/L, while peptone 18.3 mg/L. The recovery of eritadenine was evaluated using amberlite and activated charcoal (AC) adsorption isotherms. AC demonstrated the highest adsorption rate, with 75 mg of eritadenine per gram of AC, according to the Freundlich isotherm. The desorption rate reached 93.95% at pH 10. The extract obtained from submerged cultures had eritadenine content of 63.31%, corresponding to 87.86% of recovery, according to HPLC analysis. Furthermore, the novel bioherbicidal potential of eritadenine was tested on in vitro Chrysanthemum morifolium plants. The cultures extract containing eritadenine had a detrimental impact on plant development, generating mortality of 100% at 3%, 0.5%, and 0.25%. Moreover, pure eritadenine exhibited a phytotoxic effect similar than glyphosate on leaves, stems and roots. These findings highlight the significant bioherbicidal properties of eritadenine. Further studies are needed to understand the biosynthetic pathway of eritadenine and its bioherbicidal properties on weeds and illicit crops.

2.
Plants (Basel) ; 11(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684247

RESUMO

In the present study, the effect of biotization of Mentha spicata microplants with Trichoderma asperellum and Bacillus subtilis on growth, Rhizoctonia sp., incidence, and specialized metabolites content was evaluated. Analyses of root tissues of the microplants showed 100% endophytism with both microorganisms. During the acclimatization phase, plants with the endophytes T. asperellum and B. subtilis had a survival rate of 95% and 93%, respectively, compared to 75% for control plants. Then, under greenhouse conditions, a trial was carried out with biotized plants with or without Rhizoctonia sp. inoculation, plants inoculated with Rhizoctonia sp., and endophyte- and pathogen-free control. Biotized plants with the endophytes showed higher dry biomass and the incidence of Rhizoctonia was lower (8% for T. asperellum and 10% for B. subtilis) compared to plants inoculated with the pathogen (82%). In addition, plants with T. asperellum had the highest contents of total polyphenols (280 GAE/100 mg sample) and rosmarinic acid (28 mg RA/100 g sample). Thus, this study shows the potential of the technique of using the endophytes T. asperellum and B. subtilis on M. spicata microplants to improve plant survival and growth, decrease the incidence of Rhizoctonia sp., and improve the contents of specialized metabolites, which can contribute to the sustainable management of this crop.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...