Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 102(3): 365-377, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38197965

RESUMO

The mechanisms underlying neurodegeneration in Parkinson's disease (PD) are still not fully understood. Glycosylation is an important post-translational modification that affects protein function, cell-cell contacts and inflammation and can be modified in pathologic conditions. Although the involvement of aberrant glycosylation has been proposed for PD, the knowledge of the diversity of glycans and their role in PD is still minimal. Sialyl Lewis X (sLeX) is a sialylated and fucosylated tetrasaccharide with essential roles in cell-to-cell recognition processes. Pathological conditions and pro-inflammatory mediators can up-regulate sLeX expression on cell surfaces, which has important consequences in intracellular signalling and immune function. Here, we investigated the expression of this glycan using in vivo and in vitro models of PD. We show the activation of deleterious glycation-related pathways in mouse striatum upon treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin-based model of PD. Importantly, our results show that MPTP triggers the presentation of more proteins decorated with sLeX in mouse cortex and striatum in a time-dependent manner, as well as increased mRNA expression of its rate-limiting enzyme fucosyltransferase 7. sLeX is expressed in neurons, including dopaminergic neurons, and microglia. Although the underlying mechanism that drives increased sLeX epitopes, the nature of the protein scaffolds and their functional importance in PD remain unknown, our data suggest for the first time that sLeX in the brain may have a role in neuronal signalling and immunomodulation in pathological conditions. KEY MESSAGES: MPTP triggers the presentation of proteins decorated with sLeX in mouse brain. MPTP triggers the expression of sLeX rate-limiting enzyme FUT 7 in striatum. sLeX is expressed in neurons, including dopaminergic neurons, and microglia. sLeX in the brain may have a role in neuronal signalling and immunomodulation.


Assuntos
Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Antígeno Sialil Lewis X , Inflamação , Encéfalo/metabolismo , Modelos Teóricos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166980, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38061599

RESUMO

Disruption of brain cholesterol homeostasis has been implicated in neurodegeneration. Nevertheless, the role of cholesterol in Parkinson's Disease (PD) remains unclear. We have used N2a mouse neuroblastoma cells and primary cultures of mouse neurons and 1-methyl-4-phenylpyridinium (MPP+), a known mitochondrial complex I inhibitor and the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to trigger a cascade of events associated with PD neuropathological features. Simultaneously, we utilized other mitochondrial toxins, including antimycin A, oligomycin, and carbonyl cyanide chlorophenylhydrazone. MPP+ treatment resulted in elevated levels of total cholesterol and in a Niemann Pick type C1 (NPC1)-like phenotype characterized by accumulation of cholesterol in lysosomes. Interestingly, NPC1 mRNA levels were specifically reduced by MPP+. The decrease in NPC1 levels was also seen in midbrain and striatum from MPTP-treated mice and in primary cultures of neurons treated with MPP+. Together with the MPP+-dependent increase in intracellular cholesterol levels in N2a cells, we observed an increase in 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and a concomitant increase in the phosphorylated levels of mammalian target of rapamycin (mTOR). NPC1 knockout delayed cell death induced by acute mitochondrial damage, suggesting that transient cholesterol accumulation in lysosomes could be a protective mechanism against MPTP/MPP+ insult. Interestingly, we observed a negative correlation between NPC1 protein levels and disease stage, in human PD brain samples. In summary, MPP+ decreases NPC1 levels, elevates lysosomal cholesterol accumulation and alters mTOR signaling, adding to the existing notion that PD may rise from alterations in mitochondrial-lysosomal communication.


Assuntos
Doença de Parkinson , Animais , Humanos , Camundongos , Colesterol/metabolismo , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína C1 de Niemann-Pick , Fenótipo , Serina-Treonina Quinases TOR/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166993, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38142760

RESUMO

Cholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments. Herein, we show that CYP46A1 ectopic expression, in cellular models of NPC and in Npc1tm(I1061T) mice by adeno-associated virus-mediated gene therapy improved NPC disease phenotype. Amelioration in functional, biochemical, molecular and neuropathological hallmarks of NPC disease were characterized. In vivo, CYP46A1 expression partially prevented weight loss and hepatomegaly, corrected the expression levels of genes involved in cholesterol homeostasis, and promoted a redistribution of brain cholesterol accumulated in late endosomes/lysosomes. Moreover, concomitant with the amelioration of cholesterol metabolism dysregulation, CYP46A1 attenuated microgliosis and lysosomal dysfunction in mouse cerebellum, favoring a pro-resolving phenotype. In vivo CYP46A1 ectopic expression improves important features of NPC disease and may represent a valid therapeutic approach to be used concomitantly with other drugs. However, promoting cholesterol redistribution does not appear to be enough to prevent Purkinje neuronal death in the cerebellum. This indicates that cholesterol buildup in neurons might not be the main cause of neurodegeneration in this human lipidosis.


Assuntos
Doença de Niemann-Pick Tipo C , Camundongos , Humanos , Animais , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/terapia , Doença de Niemann-Pick Tipo C/metabolismo , Colesterol 24-Hidroxilase/metabolismo , Colesterol 24-Hidroxilase/uso terapêutico , Colesterol/metabolismo , Encéfalo/metabolismo , Cerebelo/patologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-31801208

RESUMO

Methylmercury (MeHg) is a highly neurotoxic compound to which human populations are exposed via fish consumption. Once in cells, MeHg actively binds thiols and selenols, interfering with the activity of redox enzymes such as thioredoxin (Trx) and the selenoenzyme thioredoxin reductase (TrxR) which integrate the thioredoxin system. In fact, it has been shown that inhibition of this system by MeHg is a critical step in the unfolding of cell death. Current clinical approaches to mitigate the toxicity of MeHg rely on the use of chelators, such as meso-2,3-dimercaptosuccinic acid (DMSA) which largely replaced British anti-Lewisite or 2,3-dimercapto-1-propanol (BAL) as the prime choice. However, therapeutic efficacy is limited and therefore new therapeutic options are necessary. In this work, we evaluated the efficacy of a macrocyclic chelator, 1-thia-4,7,10,13-tetraazacyclopentadecane ([15]aneN4S), in preventing MeHg toxicity, namely by looking at the effects over relevant molecular targets, i.e., the thioredoxin system, using both purified enzyme solutions and cell experiments with human neuroblastoma cells (SH-SY5Y). Results showed that [15]aneN4S had a similar efficacy to DMSA and BAL in reversing the inhibition of MeHg over purified TrxR and Trx by looking at both the 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) reduction assay and insulin reduction capability. In experiments with cells, none of the chelating agents could reverse the inhibition of TrxR by MeHg, which corroborates the high affinity of MeHg to the selenol in TrxR active site. [15]aneN4S and BAL, unlike DMSA, could prevent inhibition of Trx, which allows the maintenance of downstream functions, although BAL showed higher toxicity to cells. Overall these findings highlight the potential of using [15]aneN4S in the treatment of MeHg poisoning and encourage further studies, namely in vivo.


Assuntos
Compostos Aza/farmacologia , Quelantes/farmacologia , Compostos Macrocíclicos/farmacologia , Compostos de Metilmercúrio/toxicidade , Linhagem Celular Tumoral , Humanos , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo
6.
Cell Death Dis ; 10(11): 840, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690718

RESUMO

Parkinson's disease (PD) is driven by dopaminergic neurodegeneration in the substantia nigra pars compacta (SN) and striatum. Although apoptosis is considered the main neurodegenerative mechanism, other cell death pathways may be involved. In this regard, necroptosis is a regulated form of cell death dependent on receptor interacting protein 3 (RIP3), a protein also implicated in apoptosis and inflammation independently of its pro-necroptotic activity. Here, we explored the role of RIP3 genetic deletion in in vivo and in vitro PD models. Firstly, wild-type (Wt) and RIP3 knockout (RIP3ko) mice were injected intraperitoneally with MPTP (40 mg/kg, i.p.), and sacrificed after either 6 or 30 days. RIP3ko protected from dopaminergic neurodegeneration in the SN of MPTP-injected mice, but this effect was independent of necroptosis. In keeping with this, necrostatin-1s (10 mg/kg/day, i.p.) did not afford full neuroprotection. Moreover, MPTP led to DNA fragmentation, caspase-3 activation, lipid peroxidation and BAX expression in Wt mice, in the absence of caspase-8 cleavage, suggesting intrinsic apoptosis. This was mimicked in primary cortical neuronal cultures exposed to the active MPTP metabolite. RIP3 deficiency in cultured cells and in mouse brain abrogated all phenotypes. Curiously, astrogliosis was increased in the striatum of MPTP-injected Wt mice and further exacerbated in RIP3ko mice. This was accompanied by absence of microgliosis and reposition of glial cell line-derived neurotrophic factor (GDNF) levels in the striata of MPTP-injected RIP3ko mice when compared to MPTP-injected Wt mice, which in turn showed a massive GDNF decrease. RIP3ko primary mixed glial cultures also presented decreased expression of inflammation-related genes upon inflammatory stimulation. These findings hint at possible undescribed non-necroptotic roles for RIP3 in inflammation and MPTP-driven cell death, which can contribute to PD progression.


Assuntos
Necroptose/genética , Degeneração Neural/genética , Doença de Parkinson/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Animais , Apoptose/genética , Caspase 3/genética , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Camundongos Knockout , Degeneração Neural/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Doença de Parkinson/patologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Proteína X Associada a bcl-2/genética
7.
Mol Cell Neurosci ; 96: 1-9, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30771505

RESUMO

Parkinson's disease (PD) is a progressive neurological disorder, mainly characterized by the progressive loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc) and by the presence of intracellular inclusions, known as Lewy bodies. Despite SNpc being considered the primary affected region in PD, the neuropathological features are confined solely to the nigro-striatal axis. With disease progression other brain regions are also affected, namely the cerebral cortex, although the spreading of the neurologic damage to this region is still not completely unraveled. Tauroursodeoxycholic acid (TUDCA) is an endogenous bile acid that has been shown to have antioxidant properties and to exhibit a neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice model of PD. Moreover, TUDCA anti-inflammatory properties have been reported in glial cells, making it a prominent therapeutic agent in PD. Here, we used C57BL/6 mice injected with MPTP in a sub-acute paradigm aiming to investigate if the neurotoxic effects of MPTP could be extended to the cerebral cortex. In parallel, we evaluated the anti-oxidant, neuroprotective and anti-inflammatory effects of TUDCA. The anti-inflammatory mechanisms elicited by TUDCA were further dissected in microglia cells. Our results show that MPTP leads to a decrease of ATP and activated AMP-activated protein kinase levels in mice cortex, and to a transient increase in the expression of antioxidant downstream targets of nuclear factor erythroid 2 related factor 2 (Nrf-2), and parkin. Notably, MPTP increases pro-inflammatory markers, while down-regulating the expression of the anti-inflammatory protein Annexin-A1 (ANXA1). Importantly, we show that TUDCA treatment prevents the deleterious effects of MPTP, sustains increased levels of antioxidant enzymes and parkin, and most of all negatively modulates neuroinflammation and up-regulates ANXA1 expression. Additionally, results from cellular models using microglia corroborate TUDCA modulation of ANXA1 synthesis, linking inhibition of neuroinflammation and neuroprotection by TUDCA.


Assuntos
Anti-Inflamatórios/farmacologia , Córtex Cerebral/efeitos dos fármacos , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Trifosfato de Adenosina/metabolismo , Animais , Anexina A1/genética , Anexina A1/metabolismo , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Córtex Cerebral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Proteínas Quinases/metabolismo , Ácido Tauroquenodesoxicólico/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo
8.
Front Neurosci ; 12: 381, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930494

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting about 6.3 million people worldwide. PD is characterized by the progressive degeneration of dopaminergic neurons in the Substantia nigra pars compacta, resulting into severe motor symptoms. The cellular mechanisms underlying dopaminergic cell death in PD are still not fully understood, but mitochondrial dysfunction, oxidative stress and inflammation are strongly implicated in the pathogenesis of both familial and sporadic PD cases. Aberrant post-translational modifications, namely glycation and glycosylation, together with age-dependent insufficient endogenous scavengers and quality control systems, lead to cellular overload of dysfunctional proteins. Such injuries accumulate with time and may lead to mitochondrial dysfunction and exacerbated inflammatory responses, culminating in neuronal cell death. Here, we will discuss how PD-linked protein mutations, aging, impaired quality control mechanisms and sugar metabolism lead to up-regulated abnormal post-translational modifications in proteins. Abnormal glycation and glycosylation seem to be more common than previously thought in PD and may underlie mitochondria-induced oxidative stress and inflammation in a feed-forward mechanism. Moreover, the stress-induced post-translational modifications that directly affect parkin and/or its substrates, deeply impairing its ability to regulate mitochondrial dynamics or to suppress inflammation will also be discussed. Together, these represent still unexplored deleterious mechanisms implicated in neurodegeneration in PD, which may be used for a more in-depth knowledge of the pathogenic mechanisms, or as biomarkers of the disease.

9.
Mol Neurobiol ; 55(12): 9139-9155, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29651747

RESUMO

Parkinson's disease (PD) is characterized by severe motor symptoms, and currently there is no treatment that retards disease progression or reverses damage prior to the time of clinical diagnosis. Tauroursodeoxycholic acid (TUDCA) is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD; however, its effect in PD motor symptoms has never been addressed. In the present work, an extensive behavior analysis was performed to better characterize the MPTP model of PD and to evaluate the effects of TUDCA in the prevention/improvement of mice phenotype. MPTP induced significant alterations in general motor performance paradigms, including increased latency in the motor swimming, adhesive removal and pole tests, as well as altered gait, foot dragging, and tremors. TUDCA administration, either before or after MPTP, significantly reduced the swimming latency, improved gait quality, and decreased foot dragging. Importantly, TUDCA was also effective in the prevention of typical parkinsonian symptoms such as spontaneous activity, ability to initiate movement and tremors. Accordingly, TUDCA prevented MPTP-induced decrease of dopaminergic fibers and ATP levels, mitochondrial dysfunction and neuroinflammation. Overall, MPTP-injected mice presented motor symptoms that are aggravated throughout time, resembling human parkinsonism, whereas PD motor symptoms were absent or mild in TUDCA-treated animals, and no aggravation was observed in any parameter. The thorough demonstration of improvement of PD symptoms together with the demonstration of the pathways triggered by TUDCA supports a subsequent clinical trial in humans and future validation of the application of this bile acid in PD.


Assuntos
Atividade Motora , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Ácido Tauroquenodesoxicólico/uso terapêutico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Modelos Animais de Doenças , Marcha , Membro Posterior/fisiopatologia , Homeostase/efeitos dos fármacos , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Atividade Motora/efeitos dos fármacos , Movimento , Neostriado/patologia , Neostriado/fisiopatologia , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neuroglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ácido Tauroquenodesoxicólico/farmacologia , Tremor/patologia , Tremor/fisiopatologia
10.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2171-2181, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28583715

RESUMO

Impaired mitochondrial function and generation of reactive oxygen species are deeply implicated in Parkinson's disease progression. Indeed, mutations in genes that affect mitochondrial function account for most of the familial cases of the disease, and post mortem studies in sporadic PD patients brains revealed increased signs of oxidative stress. Moreover, exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial complex I inhibitor, leads to clinical symptoms similar to sporadic PD. The bile acid tauroursodeoxycholic acid (TUDCA) is an anti-apoptotic molecule shown to protect against MPTP-induced neurodegeneration in mice, but the mechanisms involved are still incompletely identified. Herein we used MPTP-treated mice, as well as primary cultures of mice cortical neurons and SH-SY5Y cells treated with MPP+ to investigate the modulation of mitochondrial dysfunction by TUDCA in PD models. We show that TUDCA exerts its neuroprotective role in a parkin-dependent manner. Overall, our results point to the pharmacological up-regulation of mitochondrial turnover by TUDCA as a novel neuroprotective mechanism of this molecule, and contribute to the validation of TUDCA clinical application in PD.


Assuntos
Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Masculino , Camundongos , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Ubiquitina-Proteína Ligases/metabolismo
11.
Exp Neurol ; 295: 77-87, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28552716

RESUMO

Parkinson's disease (PD) is a progressive neurological disorder, mainly characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. Although the cause of PD remains elusive, mitochondrial dysfunction and severe oxidative stress are strongly implicated in the cell death that characterizes the disease. Under oxidative stress, the master regulator of cellular redox status, nuclear factor erythroid 2 related factor 2 (Nrf2), is responsible for activating the transcription of several cytoprotective enzymes, namely glutathione peroxidase (GPx) and heme oxygenase-1 (HO-1). Nrf2 is a promising target to limit reactive oxygen species (ROS)-mediated damage in PD. Here, we show that tauroursodeoxycholic acid (TUDCA) prevents both 1-methyl-4-phenylpyridinium (MPP+)- and α-synuclein-induced oxidative stress, through Nrf2 activation, in SH-SY5Y cells. Additionally, we used C57BL/6 male mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to elucidate the effect of TUDCA in this in vivo model of PD. In vivo, TUDCA treatment increases the expression of Nrf2, Nrf2 stabilizer DJ-1, and Nrf2 downstream target antioxidant enzymes HO-1 and GPx. Moreover, we found that TUDCA enhances GPx activity in the brain. Altogether, our results suggest that TUDCA is a promising agent to limit ROS-mediated damage, in different models of PD acting, at least in part, through modulation of the Nrf2 signaling pathway. Therefore, TUDCA should be considered a promising therapeutic agent to be implemented in PD.


Assuntos
Intoxicação por MPTP/prevenção & controle , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Doença de Parkinson Secundária/prevenção & controle , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Intoxicação por MPTP/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/fisiopatologia , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/toxicidade
12.
Mol Neurobiol ; 54(8): 6107-6119, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27699602

RESUMO

Mitochondrial dysfunction has been deeply implicated in the pathogenesis of several neurodegenerative diseases. Thus, to keep a healthy mitochondrial population, a balanced mitochondrial turnover must be achieved. Tauroursodeoxycholic acid (TUDCA) is neuroprotective in various neurodegenerative disease models; however, the mechanisms involved are still incompletely characterized. In this study, we investigated the neuroprotective role of TUDCA against mitochondrial damage triggered by the mitochondrial uncoupler carbonyl cyanide m-chlorophelyhydrazone (CCCP). Herein, we show that TUDCA significantly prevents CCCP-induced cell death, ROS generation, and mitochondrial damage. Our results indicate that the neuroprotective role of TUDCA in this cell model is mediated by parkin and depends on mitophagy. The demonstration that pharmacological up-regulation of mitophagy by TUDCA prevents neurodegeneration provides new insights for the use of TUDCA as a modulator of mitochondrial activity and turnover, with implications in neurodegenerative diseases.


Assuntos
Morte Celular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ácido Tauroquenodesoxicólico/farmacologia , Linhagem Celular Tumoral , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Espécies Reativas de Oxigênio/metabolismo
14.
Sci Rep ; 6: 30928, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27491694

RESUMO

Cholesterol 24-hydroxylase (CYP46A1) is responsible for brain cholesterol elimination and therefore plays a crucial role in the control of brain cholesterol homeostasis. Altered CYP46A1 expression has been associated with several neurodegenerative diseases and changes in cognition. Since CYP46A1 activates small guanosine triphosphate-binding proteins (sGTPases), we hypothesized that CYP46A1 might be affecting neuronal development and function by activating tropomyosin-related kinase (Trk) receptors and promoting geranylgeranyl transferase-I (GGTase-I) prenylation activity. Our results show that CYP46A1 triggers an increase in neuronal dendritic outgrowth and dendritic protrusion density, and elicits an increase of synaptic proteins in the crude synaptosomal fraction. Strikingly, all of these effects are abolished by pharmacological inhibition of GGTase-I activity. Furthermore, CYP46A1 increases Trk phosphorylation, its interaction with GGTase-I, and the activity of GGTase-I, which is crucial for the enhanced dendritic outgrowth. Cholesterol supplementation studies indicate that cholesterol reduction by CYP46A1 is the necessary trigger for these effects. These results were confirmed in vivo, with a significant increase of p-Trk, pre- and postsynaptic proteins, Rac1, and decreased cholesterol levels, in crude synaptosomal fractions prepared from CYP46A1 transgenic mouse cortex. This work describes the molecular mechanisms by which neuronal cholesterol metabolism effectively modulates neuronal outgrowth and synaptic markers.


Assuntos
Alquil e Aril Transferases/metabolismo , Colesterol/metabolismo , Sinapses Elétricas , Neurônios/metabolismo , Receptor trkA/metabolismo , Animais , Biomarcadores/metabolismo , Células Cultivadas , Colesterol 24-Hidroxilase/genética , Feminino , Camundongos , Camundongos Transgênicos , Crescimento Neuronal , Ratos , Ratos Wistar
15.
FEBS Lett ; 590(10): 1455-66, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27086966

RESUMO

Oxidative stress is a key pathological feature of Parkinson's disease (PD). Glutathione S-transferase pi (GSTP) is a neuroprotective antioxidant enzyme regulated at the transcriptional level by the antioxidant master regulator nuclear factor-erythroid 2-related factor 2 (Nrf2). Here, we show for the first time that upon MPTP-induced oxidative stress, GSTP potentiates S-glutathionylation of Kelch-like ECH-associated protein 1 (Keap1), an endogenous repressor of Nrf2, in vivo. S-glutathionylation of Keap1 leads to Nrf2 activation and subsequently increases expression of GSTP. This positive feedback regulatory loop represents a novel mechanism by which GSTP elicits antioxidant protection in the brain.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Encéfalo/metabolismo , Glutationa S-Transferase pi/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Glutationa/metabolismo , Glutationa S-Transferase pi/genética , Proteína 1 Associada a ECH Semelhante a Kelch/química , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/química , Estresse Oxidativo , Ligação Proteica
16.
Mol Neurobiol ; 45(3): 466-77, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22539231

RESUMO

Parkinson's disease (PD) is a progressive movement disorder resulting from the death of dopaminergic neurons in the substantia nigra. Neurotoxin-based models of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) recapitulate the neurological features of the disease, triggering a cascade of deleterious events through the activation of the c-Jun N-terminal kinase (JNK). The molecular mechanisms underlying the regulation of JNK activity under cellular stress conditions involve the activation of several upstream kinases along with the fine-tuning of different endogenous JNK repressors. Glutathione S-transferase pi (GSTP), a phase II detoxifying enzyme, has been shown to inhibit JNK-activated signaling by protein-protein interactions, preventing c-Jun phosphorylation and the subsequent trigger of the cell death cascade. Here, we use C57BL/6 wild-type and GSTP knockout mice treated with MPTP to evaluate the regulation of JNK signaling by GSTP in both the substantia nigra and the striatum. The results presented herein show that GSTP knockout mice are more susceptible to the neurotoxic effects of MPTP than their wild-type counterparts. Indeed, the administration of MPTP induces a progressive demise of nigral dopaminergic neurons together with the degeneration of striatal fibers at an earlier time-point in the GSTP knockout mice when compared to the wild-type mice. Also, MPTP treatment leads to increased p-JNK levels and JNK catalytic activity in both wild-type and GSTP knockout mice midbrain and striatum. Moreover, our results demonstrate that in vivo GSTP acts as an endogenous regulator of the MPTP-induced cellular stress response by controlling JNK activity through protein-protein interactions.


Assuntos
Glutationa S-Transferase pi/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Intoxicação por MPTP/enzimologia , Intoxicação por MPTP/patologia , Neostriado/enzimologia , Substância Negra/enzimologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Ativação Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neostriado/patologia , Fosforilação , Ligação Proteica , Substância Negra/patologia
17.
J Neurochem ; 120(2): 220-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22060190

RESUMO

CYP46A1 is a neuron-specific cytochrome P450 that plays a pivotal role in maintaining cholesterol homeostasis in the CNS. However, the molecular mechanisms underlying human CYP46A1 expression are still poorly understood, partly because of the lack of a cellular model that expresses high levels of CYP46A1. Our previous studies demonstrated that specificity protein (Sp) transcription factors control CYP46A1 expression, and are probably responsible for cell-type specificity. Herein, we have differentiated Ntera2/cloneD1 cells into post-mitotic neurons and identified for the first time a human cell model that expresses high levels of CYP46A1 mRNA. Our results show a decrease in Sp1 protein levels, concomitant with the increase in CYP46A1 mRNA levels. This decrease was correlated with changes in the ratio of Sp proteins associated to the CYP46A1 proximal promoter. To examine if the increase in (Sp3+Sp4)/Sp1 ratio was observed in other Sp-regulated promoters, we have selected four genes--reelin, glutamate receptor subunit zeta-1, glutamate receptor subunit epsilon-1 and µ-opioid receptor--known to be expressed in the human brain and analyzed the Sp proteins binding pattern to the promoter of these genes, in undifferentiated and differentiated Ntera2/cloneD1. Our data indicate that the dissociation of Sp1 from promoter regions is a common feature amongst Sp-regulated genes that are up-regulated after neuronal differentiation.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Regiões Promotoras Genéticas/fisiologia , Fatores de Transcrição Sp/metabolismo , Esteroide Hidroxilases/genética , Carcinoma/patologia , Proteínas de Transporte/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Colesterol 24-Hidroxilase , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína Reelina , Fatores de Transcrição Sp/genética , Estatísticas não Paramétricas , Ativação Transcricional/efeitos dos fármacos , Tretinoína/farmacologia
18.
Neurosci Lett ; 451(3): 241-5, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19159663

RESUMO

Activation of c-Jun N-terminal kinase (JNK) signaling pathway is a key event in apoptosis. The cellular mechanisms underlying the control of JNK catalytic activity before and immediately after stress in neuronal cells are still not completely understood. Under resting conditions the basal activity of JNK is low, since JNK is kept inactive by the presence of one or more endogenous repressors, including glutathione S-transferase pi (GSTpi). The aim of this study was to investigate the control of JNK signaling by GSTpi. We examined the modifications of GSTpi protein expression and oligomerization after UV irradiation-induced stress in human SH-SY5Y neuroblastoma cells. In parallel, we investigated the effect of UV irradiation on JNK activation and c-Jun phosphorylation, and whether apoptosis represents a functional consequence triggered by this signaling pathway. We show that in SH-SY5Y cells JNK phosphorylation and activation precedes c-Jun phosphorylation and caspase-3 cleavage. Importantly, the increase of JNK enzymatic activity correlates with the dissociation of GSTpi-JNK complexes and the increased concentration of GSTpi multimer forms. Results presented herein show for the first time direct interaction between JNK and GSTpi in SH-SY5Y neuroblastoma cells, and suggest that in these cells GSTpi may serve as a regulator of JNK catalytic activity. This work contributes to further elucidate the mechanisms underlying the regulation of JNK activity under stress conditions.


Assuntos
Apoptose/fisiologia , Glutationa S-Transferase pi/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neurônios/enzimologia , Estresse Fisiológico/fisiologia , Apoptose/efeitos da radiação , Caspase 3/metabolismo , Ativação Enzimática/fisiologia , Ativação Enzimática/efeitos da radiação , Humanos , Substâncias Macromoleculares/metabolismo , Neurônios/efeitos da radiação , Fosforilação/efeitos da radiação , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação , Estresse Fisiológico/efeitos da radiação , Células Tumorais Cultivadas , Raios Ultravioleta , Regulação para Cima/fisiologia , Regulação para Cima/efeitos da radiação
19.
J Mol Neurosci ; 38(2): 114-27, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18792812

RESUMO

MPTP-induced dopaminergic neurotoxicity involves major biochemical processes such as oxidative stress and impaired energy metabolism, leading to a significant reduction in the number of nigrostriatal dopaminergic neurons. Glutathione S-transferase pi (GSTpi) is a phase II detoxifying enzyme that provides protection of cells from injury by toxic chemicals and products of oxidative stress. In humans, polymorphisms of GSTP1 affect substrate selectivity and stability increasing the susceptibility to parkinsonism-inducing effects of environmental toxins. Given the ability of MPTP to increase the levels of reactive oxygen species and the link between altered redox potential and the expression and activity of GSTpi, we investigated the effect of MPTP on GSTpi cellular concentration in an in vivo model of Parkinson's disease. The present study demonstrates that GSTpi is actively expressed in both substantia nigra pars compacta and striatum of C57BL/6 mice brain, mostly in oligodendrocytes and astrocytes. After systemic administration of MPTP, GSTpi expression is significantly increased in glial cells in the vicinity of dopaminergic neurons cell bodies and fibers. The results suggest that GSTpi expression may be part of the mechanism underlying the ability of glial cells to elicit protection against the mechanisms involved in MPTP-induced neuronal death.


Assuntos
Corpo Estriado , Dopamina/metabolismo , Glutationa S-Transferase pi/metabolismo , Intoxicação por MPTP/metabolismo , Mesencéfalo , Neurônios , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Caspase 3/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Dopaminérgicos/farmacologia , Glutationa S-Transferase pi/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/induzido quimicamente , Degeneração Neural/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína X Associada a bcl-2/metabolismo
20.
Acta Reumatol Port ; 31(4): 293-302, 2006.
Artigo em Português | MEDLINE | ID: mdl-17334042

RESUMO

Glucocorticoids have important immunosupressive properties, being used as anti-inflammatory therapeutic agents in a wide range of inflammatory and auto-immune pathologies. One of the best studied mechanisms by which glucocorticoids exert most of their anti-inflammatory actions involves the induction of the synthesis and the secretion of the mediator and effector protein annexin 1 (ANXA1). Here we review the molecular and cellular pathways involved on the glucocorticoid-induced synthesis and secretion of ANXA1 in a variety of cell types. Since its discovery as an anti-phospholipase A2 protein, ANXA1 has come a long way to encompass a wide range of cellular effects, the most relevant ones being those that directly modulate the inflammatory response. The results presented in this review open the way to further pharmacological studies which will allow the identification of the role of ANXA1 in inflamatory pathologies, namely rheumatoid arthritis.


Assuntos
Anexina A1/fisiologia , Anti-Inflamatórios/farmacologia , Glucocorticoides/farmacologia , Sistemas do Segundo Mensageiro/fisiologia , Animais , Anexina A1/biossíntese , Anexina A1/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...