Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 192(14): 3678-88, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20472802

RESUMO

The dimorphic bacterium Caulobacter crescentus has evolved marked phenotypic changes during its 50-year history of culture in the laboratory environment, providing an excellent system for the study of natural selection and phenotypic microevolution in prokaryotes. Combining whole-genome sequencing with classical molecular genetic tools, we have comprehensively mapped a set of polymorphisms underlying multiple derived phenotypes, several of which arose independently in separate strain lineages. The genetic basis of phenotypic differences in growth rate, mucoidy, adhesion, sedimentation, phage susceptibility, and stationary-phase survival between C. crescentus strain CB15 and its derivative NA1000 is determined by coding, regulatory, and insertion/deletion polymorphisms at five chromosomal loci. This study evidences multiple genetic mechanisms of bacterial evolution as driven by selection for growth and survival in a new selective environment and identifies a common polymorphic locus, zwf, between lab-adapted C. crescentus and clinical isolates of Pseudomonas aeruginosa that have adapted to a human host during chronic infection.


Assuntos
Adaptação Fisiológica/genética , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/fisiologia , Caulobacter crescentus/virologia , Evolução Molecular , Variação Genética , Dados de Sequência Molecular , Filogenia
2.
Mol Microbiol ; 77(1): 236-51, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20487277

RESUMO

Toxin-antitoxin (TA) gene cassettes are widely distributed across bacteria, archaea and bacteriophage. The chromosome of the alpha-proteobacterium, Caulobacter crescentus, encodes eight ParE/RelE-superfamily toxins that are organized into operons with their cognate antitoxins. A systematic genetic analysis of these parDE and relBE TA operons demonstrates that seven encode functional toxins. The one exception highlights an example of a non-functional toxin pseudogene. Chromosomally encoded ParD and RelB proteins function as antitoxins, inhibiting their adjacently encoded ParE and RelE toxins. However, these antitoxins do not functionally complement each other, even when overexpressed. Transcription of these paralogous TA systems is differentially regulated under distinct environmental conditions. These data support a model in which multiple TA paralogs encoded by a single bacterial chromosome form independent functional units with insulated protein-protein interactions. Further characterization of the parDE(1) system at the single-cell level reveals that ParE(1) toxin functions to inhibit cell division but not cell growth; residues at the C-terminus of ParE(1) are critical for its stability and toxicity. While continuous ParE(1) overexpression results in a substantial loss in cell viability at the population level, a fraction of cells escape toxicity, providing evidence that ParE(1) toxicity is not uniform within clonal cell populations.


Assuntos
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Caulobacter crescentus/enzimologia , Caulobacter crescentus/fisiologia , Sequência de Aminoácidos , Antitoxinas/genética , Toxinas Bacterianas/genética , Biomassa , Caulobacter crescentus/genética , Caulobacter crescentus/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Perfilação da Expressão Gênica , Viabilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...