Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(1): 1026-1036, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643441

RESUMO

Sepiolite is a natural clay silicate that is widely used, including biomedical applications; notably sepiolite shows promising features for the transfer of biological macromolecules into mammalian cells. However, before its use, such an approach should address the efficiency of binding to biological macromolecules and cell toxicity. Because sepiolite spontaneously forms aggregates, its disaggregation can represent an important challenge for improving the suspension performance and the assembly with biological species. However, this can also influence the toxicity of sepiolite in mammalian cells. Here, a very pure commercial sepiolite (Pangel S9), which is present as a partially defibrillated clay mineral, is used to study the consequences of additional deagglomeration/dispersion through sonication. We analyzed the impact of extra sonication on the dispersion of sepiolite aggregates. Factors such as sonication time, sonicator power, and temperature are taken into account. With increasing sonication time, a decrease in aggregation is observed, as well as a decrease in the length of the nanofibers monitored by atomic force microscopy. Changes in the temperature and pH of the solution are also observed during the sonication process. Moreover, although the adsorption capacity of bovine serum albumin (BSA) protein on sepiolite is increased with sonication time, the DNA adsorption efficiency remains unaffected. Finally, sonication of sepiolite decreases the hemolytic activity in blood cells and the toxicity in two different human cell lines. These data show that extra sonication of deagglomerated sepiolite can further favor its interaction with some biomacromolecules (e.g., BSA), and, in parallel, decrease sepiolite toxicity in mammalian cells. Therefore, sonication represents an alluring procedure for future biomedical applications of sepiolite, even when using commercial defibrillated particles.

2.
Chem Rec ; 18(7-8): 849-857, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29286197

RESUMO

Sepiolite is a nanofibrous natural silicate that can be used as a nanocarrier for DNA transfer thanks to its strong interaction with DNA molecules and its ability to be naturally internalized into mammalian cells through both non-endocytic and endocytic pathways. Sepiolite, due to its ability to bind various biomolecules, could be a good candidate for use as a nanocarrier for the simultaneous vectorization of diverse biological molecules. In this paper, we review our recent work, issued from a starting collaboration with Prof. Ruiz-Hitzky, that includes diverse aspects on the characterization and main features of sepiolite/DNA nanohybrids, and we present an outlook for the further development of sepiolite for DNA transfer.


Assuntos
DNA/química , Técnicas de Transferência de Genes , Silicatos de Magnésio/química , Nanoestruturas/química , Adsorção , Animais , DNA/metabolismo , Humanos , Silicatos de Magnésio/metabolismo , Silicatos de Magnésio/toxicidade , Nanoestruturas/toxicidade , Tamanho da Partícula , Estudo de Prova de Conceito , Proteínas/química
3.
Sci Rep ; 7(1): 5586, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28717157

RESUMO

Sepiolite is a nanofibrous natural silicate that can be used as a nanocarrier because it can be naturally internalized into mammalian cells, due to its nano-size dimension. Therefore, deciphering the mechanisms of sepiolite cell internalization constitutes a question interesting biotechnology, for the use of sepiolite as nanocarrier, as well as environmental and public health concerns. Though it is low, the perfectly stable and natural intrinsic fluorescence of sepiolite nanofibers allows to follow their fate into cells by specifically sensitive technics. By combining fluorescence microscopy (including confocal analysis), time-lapse video microscopy, fluorescence activated cell sorting and transmission electron microscopy, we show that sepiolite can be spontaneously internalized into mammalian cells through both non-endocytic and endocytic pathways, macropinocytosis being one of the main pathways. Interestingly, exposure of the cells to endocytosis inhibitors, such as chloroquine, two-fold increase the efficiency of sepiolite-mediated gene transfer, in addition to the 100-fold increased resulting from sepiolite sonomechanical treatment. As sepiolite is able to bind various biological molecules, this nanoparticulate silicate could be a good candidate as a nanocarrier for simultaneous vectorization of diverse biological molecules.


Assuntos
DNA/química , DNA/genética , Portadores de Fármacos/química , Silicatos de Magnésio/química , Transfecção/métodos , Animais , Células CHO , Linhagem Celular , Separação Celular , Cloroquina/farmacologia , Cricetulus , Endocitose , Citometria de Fluxo , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Imagem com Lapso de Tempo
4.
Sci Rep ; 6: 36341, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27808269

RESUMO

Nanofibers of sepiolite, a natural silicate belonging to the clay minerals family, might constitute a potential promising nanocarrier for the non-viral transfer of bio-molecules. We show here that sepiolite nanofibers efficiently bind different types of DNA molecules through electrostatic interactions, hydrogen bonding, cation bridges, and van der Waals forces. Moreover, Fourier-transform infrared spectroscopy identified the external silanol groups as the main sites of interaction with the DNA. Furthermore, as a proof of concept, we show that sepiolite is able to stably transfer plasmid DNA into mammalian cells and that the efficiency can be optimized. Indeed, sonication of sepiolite 100-fold stimulated DNA transfection efficiency. These results open the way to the use of sepiolite-based biohybrids as a novel class of nanoplatform for gene transfer with potential clinical applications.


Assuntos
DNA/metabolismo , Técnicas de Transferência de Genes , Silicatos de Magnésio/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Ligação de Hidrogênio , Nanofibras , Sonicação , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...