Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Wildl Dis ; 55(1): 158-163, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30235085

RESUMO

Swine influenza viruses (SIVs) have been repeatedly demonstrated to circulate in wild boar ( Sus scrofa) populations, whereas no evidence of exposure to avian influenza viruses (AIVs) has been described in wild boar. To better understand how different environments may influence the ecology of influenza A viruses (IAVs) in wild suid populations, we examined biologic samples of wild boars from two study areas represented by an upland (UL) and a wetland (WL) in northern and central Italy, respectively. Serum samples were collected from 388 wild boars sampled in the UL, whereas both a serum sample and a nasal swab were obtained from each of 35 wild boars sampled in the WL. Twenty of 388 (5.2%) sera from the UL were positive by enzyme-linked immunosorbent assay for the presence of antibodies against influenza A nucleoprotein and some of these samples showed antibodies by hemagglutination inhibition to SIVs of H1N1 (1/20), H1N2 (10/20), and H3N2 (1/20) antigenic subtypes. No IAV-seropositive wild boar was detected in the WL, although one of 35 animals was found to be IAV-positive by both a reverse transcriptase PCR and a real-time reverse transcriptase PCR. We hypothesize an SIV exposure for IAV-seropositive wild boars occupying the UL, whereas a possible AIV spillover from aquatic bird species-natural reservoirs of IAVs-to wild boars in the WL cannot be ruled out. Further research is needed to better understand the role played by wild boars in IAV ecology in Mediterranean habitats.


Assuntos
Vírus da Influenza A/imunologia , Infecções por Orthomyxoviridae/veterinária , Sus scrofa/sangue , Animais , Vírus da Influenza A/isolamento & purificação , Itália/epidemiologia , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Estudos Soroepidemiológicos
2.
J Virol Methods ; 251: 7-14, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28987424

RESUMO

As a vaccination vector, MVA has been widely investigated both in animal models and humans. The construction of recombinant MVA (rMVA) relies on homologous recombination between an acceptor virus and a donor plasmid in infected/transfected permissive cells. Our construction strategy "Red-to-Green gene swapping" - based on the exchange of two fluorescent markers within the flanking regions of MVA deletion ΔIII, coupled to fluorescence activated cell sorting - is here extended to a second insertion site, within the flanking regions of MVA deletion ΔVI. Exploiting this strategy, both double and triple rMVA were constructed, expressing as transgenes the influenza A proteins HA, NP, M1, and PB1. Upon validation of the harbored transgenes co-expression, double and triple recombinants rMVA(ΔIII)-NP-P2A-M1 and rMVA(ΔIII)-NP-P2A-M1-(ΔVI)-PB1 were assayed for in vivo immunogenicity and protection against lethal challenge. In vivo responses were identical to those obtained with the reported combinations of single recombinants, supporting the feasibility and reliability of the present improvement and the extension of Red-to-Green gene swapping to insertion sites other than ΔIII.


Assuntos
Portadores de Fármacos , Vetores Genéticos , Vacinas contra Influenza/imunologia , Vaccinia virus/genética , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Expressão Gênica , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sobrevida , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
3.
Hum Vaccin Immunother ; 14(3): 637-646, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28617077

RESUMO

Annual administration of the seasonal influenza vaccine is strongly recommended to reduce the burden of disease, particularly for persons at the highest risk for the viral infection. Even during years when there is a good match between the vaccine and circulating strains, host-related factors such as age, preexisting immunity, genetic polymorphisms, and the presence of chronic underlying conditions may compromise influenza vaccine responsiveness. The application of new methodologies and large-scale profiling technologies are improving the ability to measure vaccine immunogenicity and our understanding of the immune mechanisms by which vaccines induce protective immunity. This review attempts to summarize the general concepts of how host factors can contribute to the heterogeneity of immune responses induced by influenza vaccines.


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Animais , Anticorpos Antivirais/imunologia , Humanos , Imunogenicidade da Vacina/imunologia
4.
Pathog Glob Health ; 111(2): 69-75, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28081672

RESUMO

BACKGROUND: Vaccination offers protection against influenza, although current vaccines need to be reformulated each year. The development of a broadly protective influenza vaccine would guarantee the induction of heterosubtypic immunity also against emerging influenza viruses of a novel subtype. Vaccine candidates based on the stalk region of the hemagglutinin (HA) have the potential to induce broad and persistent protection against diverse influenza A viruses. METHODS: Modified vaccinia virus Ankara (MVA) expressing a headless HA (hlHA) of A/California/4/09 (CA/09) virus was used as a vaccine to immunize C57BL/6 mice. Specific antibody and cell-mediated immune responses were determined, and challenge experiments were performed by infecting vaccinated mice with CA/09 virus. RESULTS: Immunization of mice with CA/09-derived hlHA, vectored by MVA, was able to elicit influenza-specific broad cross-reactive antibodies and cell-mediated immune responses, but failed to induce neutralizing antibodies and did not protect mice against virus challenge. CONCLUSION: Although highly immunogenic, our vaccine was unable to induce a protective immunity against influenza. A misfolded and unstable conformation of the hlHA molecule may have affected its capacity of inducing neutralizing antiviral, conformational antibodies. Design of stable hlHA-based immunogens and their delivery by recombinant MVA-based vectors has the potential of improving this promising approach for a universal influenza vaccine.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Antivirais/biossíntese , Antígenos Virais/imunologia , Proteção Cruzada/imunologia , Vetores Genéticos , Imunidade Celular , Camundongos Endogâmicos C57BL , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/imunologia , Vacinas Sintéticas/imunologia , Vaccinia virus/imunologia , Proteínas Virais/imunologia
5.
Pathog Glob Health ; 111(2): 76-82, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28079473

RESUMO

BACKGROUND: The emergence of novel strains of influenza A viruses with hemagglutinins (HAs) that are antigenically distinct from those circulating in humans, and thus have pandemic potential, pose concerns and call for the development of more broadly protective influenza vaccines. In the present study, modified vaccinia virus Ankara (MVA) encoding internal influenza antigens were evaluated for their immunogenicity and ability to protect HLA-A2.1 transgenic (AAD) mice from infection with influenza viruses. METHODS: MVAs expressing NP (MVA-NP), M1 (MVA-M1) or polymerase PB1 (MVA-PB1) of A/California/4/09 (CA/09) virus were generated and used to immunize AAD mice. Antibodies and CD8+T cell responses were assessed by ELISA and ELISPOT, respectively, and challenge experiments were performed by infecting vaccinated mice with CA/09 virus. RESULTS: CD8+T cells specific to immunodominant and subdominant epitopes on the internal influenza proteins were elicited by MVA-based vectors in AAD mice, whereas influenza-specific antibodies were detected only in MVA-NP-immunized mice. Both M1- and NP-based MVA vaccines, regardless of whether they were applied individually or in combination, conferred protection against lethal influenza virus challenge. CONCLUSION: Our data further emphasize the promising potential of MVA vector expressing internal antigens toward the development of a universal influenza vaccine.


Assuntos
Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vaccinia virus/imunologia , Animais , Anticorpos Antivirais/biossíntese , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Vetores Genéticos , Antígeno HLA-A2/genética , Humanos , Imunidade Celular , Camundongos Transgênicos , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/imunologia , Vacinas Sintéticas/imunologia , Proteínas Virais/imunologia
6.
Adv Exp Med Biol ; 972: 17-33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27677275

RESUMO

Since the 1990s, the threat of influenza viruses to veterinary and human public health has increased. This coincides with the larger global populations of poultry, pigs, and people and with changing ecological factors. These factors include the redistribution of the human population to cities, rapid mass transportation of people and infectious agents, increased global land use, climate change, and possible changes in viral ecology that perpetuate highly pathogenic influenza viruses in the aquatic bird reservoir. The emergence of H5N1, H7N9, and H9N2 subtypes of influenza A virus and the increased genetic exchange among influenza viruses in wild aquatic birds, domestic poultry, swine, and humans pose a continuing threat to humanity. Here we consider the fundamental and practical knowledge of influenza A viruses at the human-animal interfaces to facilitate the development of novel control strategies and modified agricultural practices that will reduce or prevent interspecies transmission.


Assuntos
Aves , Vírus da Influenza A/classificação , Vírus da Influenza A/patogenicidade , Influenza Aviária/transmissão , Influenza Humana/transmissão , Animais , Animais Selvagens , Doenças Transmissíveis Emergentes/virologia , Variação Genética , Hemaglutininas , Humanos , Vírus da Influenza A/genética , Influenza Aviária/prevenção & controle , Influenza Humana/prevenção & controle , Mamíferos , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Pandemias , Ligação Proteica , Virulência , Zoonoses
7.
Euro Surveill ; 21(49)2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27983512

RESUMO

Introduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) into Europe prompted animal and human health experts to implement protective measures to prevent transmission to humans. We describe the situation in 2016 and list public health measures and recommendations in place. We summarise critical interfaces identified during the A(H5N1) and A(H5N8) outbreaks in 2014/15. Rapid exchange of information between the animal and human health sectors is critical for a timely, effective and efficient response.


Assuntos
Surtos de Doenças/prevenção & controle , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/virologia , Influenza Humana/virologia , Zoonoses/prevenção & controle , Animais , Aves , Europa (Continente)/epidemiologia , Humanos , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Vigilância da População , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Saúde Pública , Virulência , Zoonoses/transmissão , Zoonoses/virologia
9.
Virol J ; 13: 56, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27036323

RESUMO

BACKGROUND: Cross-reactive immunity against heterologous strains of influenza virus has the potential to provide partial protection in individuals that lack the proper neutralizing antibodies. In particular, the boosting of memory CD8+ T cell responses to conserved viral proteins can attenuate disease severity caused by influenza virus antigenic variants or pandemic strains. However, little is yet known about which of these conserved internal antigens would better induce and/or recall memory CD8+ T cells after in vivo administration of an inactivated whole virus vaccine. METHODS: We explored the CD8 + T cell responses to selected epitopes of the internal proteins of an H7N3 influenza virus that were cross-reactive with A/PR/8/34 virus in HLA-A2.1 transgenic (AAD) mice. RESULTS: CD8+ T cells against dominant and subdominant epitopes were detected upon infection of mice with live H7N3 virus, whereas immunization with non-replicating virus elicited CD8+ T cell responses against mostly immunodominant epitopes, which were rapidly recalled following infection with A/PR/8/34 virus. These vaccine-induced T cell responses were able to reduce the lung viral load in mice challenged intranasally with the heterologous influenza virus. CONCLUSIONS: A single immunization with non-replicating influenza virus vaccines may be able to elicit or recall cross-reactive CD8+ T cell responses to conserved immunodominant epitopes and, to some extent, counteract an infection by heterologous virus.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-A2/genética , Imunidade Celular , Imunidade Heteróloga , Vírus da Influenza A Subtipo H7N3/imunologia , Vacinas contra Influenza/imunologia , Animais , Antígenos Virais/imunologia , Reações Cruzadas , Epitopos de Linfócito T/imunologia , Feminino , Antígeno HLA-A2/metabolismo , Vacinas contra Influenza/administração & dosagem , Camundongos Transgênicos , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
10.
Influenza Other Respir Viruses ; 8(3): 367-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24373385

RESUMO

OBJECTIVES: To examine cross-reactivity between hemagglutinin (HA) derived from A/California/7/09 (CA/09) virus and that derived from representative Eurasian "avian-like" (EA) H1N1 swine viruses isolated in Italy between 1999 and 2008 during virological surveillance in pigs. DESIGN: Modified vaccinia virus Ankara (MVA) expressing the HA gene of CA/09 virus (MVA-HA-CA/09) was used as a vaccine to investigate cross-protective immunity against H1N1 swine viruses in mice. SAMPLE: Two classical swine H1N1 (CS) viruses and four representative EA-like H1N1 swine viruses previously isolated during outbreaks of respiratory disease in pigs on farms in Northern Italy were used in this study. SETTING: Female C57BL/6 mice were vaccinated with MVA/HA/CA/09 and then challenged intranasally with H1N1 swine viruses. MAIN OUTCOME MEASURES: Cross-reactive antibody responses were determined by hemagglutination- inhibition (HI) and virus microneutralizing (MN) assays of sera from MVA-vaccinated mice. The extent of protective immunity against infection with H1N1 swine viruses was determined by measuring lung viral load on days 2 and 4 post-challenge. RESULTS AND CONCLUSIONS: Systemic immunization of mice with CA/09-derived HA, vectored by MVA, elicited cross-protective immunity against recent EA-like swine viruses. This immune protection was related to the levels of cross-reactive HI antibodies in the sera of the immunized mice and was dependent on the similarity of the antigenic site Sa of H1 HAs. Our findings suggest that the herd immunity elicited in humans by the pandemic (H1N1) 2009 virus could limit the transmission of recent EA-like swine HA genes into the influenza A virus gene pool in humans.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Doenças dos Suínos/imunologia , Vaccinia virus/genética , Animais , Proteção Cruzada , Feminino , Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos C57BL , Suínos , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vaccinia virus/metabolismo
11.
PLoS One ; 8(2): e57576, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469029

RESUMO

BACKGROUND: Pigs play a key epidemiologic role in the ecology of influenza A viruses (IAVs) emerging from animal hosts and transmitted to humans. Between 2008 and 2010, we investigated the health risk of occupational exposure to swine influenza viruses (SIVs) in Italy, during the emergence and spread of the 2009 H1N1 pandemic (H1N1pdm) virus. METHODOLOGY/PRINCIPAL FINDINGS: Serum samples from 123 swine workers (SWs) and 379 control subjects (Cs), not exposed to pig herds, were tested by haemagglutination inhibition (HI) assay against selected SIVs belonging to H1N1 (swH1N1), H1N2 (swH1N2) and H3N2 (swH3N2) subtypes circulating in the study area. Potential cross-reactivity between swine and human IAVs was evaluated by testing sera against recent, pandemic and seasonal, human influenza viruses (H1N1 and H3N2 antigenic subtypes). Samples tested against swH1N1 and H1N1pdm viruses were categorized into sera collected before (n. 84 SWs; n. 234 Cs) and after (n. 39 SWs; n. 145 Cs) the pandemic peak. HI-antibody titers ≥10 were considered positive. In both pre-pandemic and post-pandemic peak subperiods, SWs showed significantly higher swH1N1 seroprevalences when compared with Cs (52.4% vs. 4.7% and 59% vs. 9.7%, respectively). Comparable HI results were obtained against H1N1pdm antigen (58.3% vs. 7.7% and 59% vs. 31.7%, respectively). No differences were found between HI seroreactivity detected in SWs and Cs against swH1N2 (33.3% vs. 40.4%) and swH3N2 (51.2 vs. 55.4%) viruses. These findings indicate the occurrence of swH1N1 transmission from pigs to Italian SWs. CONCLUSION/SIGNIFICANCE: A significant increase of H1N1pdm seroprevalences occurred in the post-pandemic peak subperiod in the Cs (p<0.001) whereas SWs showed no differences between the two subperiods, suggesting a possible occurrence of cross-protective immunity related to previous swH1N1 infections. These data underline the importance of risk assessment and occupational health surveillance activities aimed at early detection and control of SIVs with pandemic potential in humans.


Assuntos
Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Reações Cruzadas/imunologia , Imunidade/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Exposição Ocupacional/estatística & dados numéricos , Pandemias/estatística & dados numéricos , Suínos/virologia , Adolescente , Adulto , Idoso , Animais , Antígenos Virais/imunologia , Feminino , Humanos , Vírus da Influenza A Subtipo H1N2/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Estações do Ano , Adulto Jovem
12.
Vaccine ; 31(13): 1717-24, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23380456

RESUMO

Current influenza vaccines induce poor cross-reactive CD8+ T cell responses. Cellular immunity is generally specific for epitopes that are remarkably conserved among different subtypes, suggesting that strategies to improve the cross-presentation of viral antigens by dendritic cells (DC) could elicit a broadly protective immune response. Previous studies have shown that limited proteolysis within the endocytic pathway can favorably influence antigen processing and thus immune responses. Herein, we demonstrate that chloroquine improves the cross-presentation of non-replicating influenza virus in vitro and T cell responses in mice following a single administration of inactivated HI-X31 virus. CD8+ T cells were also recruited to lymph nodes draining the site of infection and able to reduce viral load following pulmonary challenge with the heterologous PR8 virus. These findings may have implications for vaccination strategies aimed at improving the cross-presentation capacity of DCs and thus the size of effector and memory CD8+ T cells against influenza vaccines.


Assuntos
Cloroquina/administração & dosagem , Fatores Imunológicos/administração & dosagem , Vacinas contra Influenza/imunologia , Orthomyxoviridae/imunologia , Linfócitos T/imunologia , Animais , Vacinas contra Influenza/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
13.
J Biomed Biotechnol ; 2011: 497364, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22007143

RESUMO

Recombinant influenza viruses that bear the single immunodominant CD8+ T cell epitope OVA(257-264) or the CD4+ T cell epitope OVA323₋339 of the model antigen ovalbumin (OVA) have been useful tools in immunology. Here, we generated a recombinant influenza virus, WSN-OVA(I/II), that bears both OVA-specific CD8+ and CD4+ epitopes on its hemagglutinin molecule. Live and heat-inactivated WSN-OVA(I/II) viruses were efficiently presented by dendritic cells in vitro to OT-I TCR transgenic CD8+ T cells and OT-II TCR transgenic CD4+ T cells. In vivo, WSN-OVA(I/II) virus was attenuated in virulence, highly immunogenic, and protected mice from B16-OVA tumor challenge in a prophylactic model of vaccination. Thus, WSN-OVA(I/II) virus represents an additional tool, along with OVA TCR transgenic mice, for further studies on T cell responses and may be of value in vaccine design.


Assuntos
Epitopos de Linfócito T/imunologia , Orthomyxoviridae/imunologia , Ovalbumina/genética , Ovalbumina/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Feminino , Hemaglutininas/genética , Hemaglutininas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Orthomyxoviridae/genética , Vacinas Sintéticas/metabolismo
14.
Expert Rev Vaccines ; 8(6): 689-93, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19485749

RESUMO

The development of an effective influenza vaccine would require the ability to protect against infection with multiple influenza viral strains. In particular, mucosal and T-cell-mediated immunity may offer a more cross-reactive vaccine approach for the prevention of epidemic or potentially pandemic influenza. Thus, it is imperative to more fully understand the molecular events that occur in the host upon infection with a live virus and, in particular, to better evaluate the role of the distinct signaling pathways involved in developing protective immune responses. The paper under evaluation here introduces the notion that activation of caspase-1 inflammasomes in the hematopoietic cells in vivo are required for the establishment of Th1, cytotoxic T-lymphocyte and IgA responses to influenza virus infection.

15.
Clin Vaccine Immunol ; 15(10): 1497-504, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18753338

RESUMO

The efficiency of cross-presentation of exogenous antigens by dendritic cells (DCs) would seem to be related to the level of antigen escape from massive degradation mediated by lysosomal proteases in an acidic environment. Here, we demonstrate that a short course of treatment with chloroquine in mice during primary immunization with soluble antigens improved the cross-priming of naïve CD8(+) T lymphocytes in vivo. More specifically, priming of chloroquine-treated mice with soluble ovalbumin (OVA), OVA associated with alum, or OVA pulsed on DCs was more effective in inducing OVA-specific CD8(+) T lymphocytes than was priming of untreated mice. We conclude that chloroquine treatment improves the cross-presentation capacity of DCs and thus the size of effector and memory CD8(+) T cells during vaccination.


Assuntos
Adjuvantes Imunológicos/farmacologia , Linfócitos T CD8-Positivos/imunologia , Cloroquina/farmacologia , Ovalbumina/imunologia , Vacinação/métodos , Compostos de Alúmen/farmacologia , Animais , Células Cultivadas , Testes Imunológicos de Citotoxicidade , Células Dendríticas/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL
16.
Virology ; 340(2): 296-306, 2005 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-16054188

RESUMO

To track epitope-specific CD4(+) T cells at a single-cell level during influenza infection, the MHC class II-restricted OVA(323-339) epitope was engineered into the neuraminidase stalk of influenza/A/WSN, creating a surrogate viral antigen. The recombinant virus, influenza A/WSN/OVA(II), replicated well, was cleared normally, and stimulated both wild-type and DO11.10 or OT-II TCR transgenic OVA-specific CD4(+) T cells. OVA-specific CD4 T cells proliferated during infection only when the OVA epitope was present. However, previously primed (but not naive) transgenic CD4(+) T cells were recruited to the infected lung both in the presence and absence of the OVA(323-339) epitope. These data show that, when primed, CD4(+) T cells may traffic to the lung in the absence of antigen, but do not proliferate. These results also document a useful tool for the study of CD4 T cells in influenza infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ativação Linfocitária , Infecções por Orthomyxoviridae/imunologia , Transferência Adotiva , Sequência de Aminoácidos , Animais , Linhagem Celular , Modelos Animais de Doenças , Cães , Vírus da Influenza A/isolamento & purificação , Rim , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Ovalbumina/química , Fragmentos de Peptídeos , Ensaio de Placa Viral
17.
J Virol ; 78(2): 1020-5, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14694134

RESUMO

The humoral and cellular immune responses in the genital mucosa likely play an important role in the prevention of sexually transmitted infections, including infection with human immunodeficiency virus type 1 (HIV-1). Here we show that vaginal infection of progesterone-treated BALB/c mice with a recombinant influenza virus bearing the immunodominant P18IIIB cytotoxic T-lymphocyte (CTL) epitope of the gp160 envelope protein from an HIV-1 IIIB isolate (P18IIIB; RIQRGPGRAFVTIGK) can induce a specific immune response in regional mucosal lymph nodes, as well as in a systemic site (the spleen). A single inoculation of mice with the recombinant influenza virus induced long-lasting (at least 5 months) antigen-specific CTL memory detectable as a rapid recall of effector CTLs upon vaginal infection with recombinant vaccinia virus expressing HIV-1 IIIB envelope gene products. Long-term antigen-specific CTL memory was also induced and maintained in distant mucosal tissues when mice were intranasally immunized with the recombinant influenza virus. These results indicate that mucosal immunization and, in particular, local vaginal immunization with recombinant influenza virus can provide strong, durable immune responses in the female genital tract of mice.


Assuntos
Epitopos/imunologia , Proteína gp160 do Envelope de HIV/imunologia , Vírus da Influenza A/imunologia , Linfonodos/imunologia , Baço/imunologia , Vacinas Sintéticas/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/sangue , Feminino , Proteína gp160 do Envelope de HIV/química , Proteína gp160 do Envelope de HIV/genética , HIV-1/imunologia , Humanos , Memória Imunológica , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Linfócitos T Citotóxicos/imunologia , Vacinas Sintéticas/administração & dosagem , Vagina/virologia
18.
J Virol ; 77(4): 2445-51, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12551982

RESUMO

The immune response to cutaneous herpes simplex virus type 1 (HSV-1) infection begins with remarkable rapidity. Activation of specific cytotoxic T lymphocytes (CTL) begins within hours of infection, even though the response within the draining lymph nodes peaks nearly 5 days later. HSV gene products are classified into three main groups, alpha, beta, and gamma, based on their kinetics and requirements for expression. In C57BL/6 mice, the immunodominant epitope from HSV is derived from glycoprotein B (gB(498-505)). While gB is considered a gamma or "late" gene product, previous reports have indicated that some level of gene expression may occur soon after infection. Using brefeldin A as a specific inhibitor of viral antigen presentation to major histocompatibility complex class I-restricted CTL, we have formally addressed the timing of gB peptide expression in an immunologically relevant manner following infection. Presentation of gB peptide detected by T-cell activation was first observed within 2 h of infection. Comparison with another viral epitope expressed early during infection, HSV-1 ribonucleotide reductase, demonstrated that gB is presented with the same kinetics as this classical early-gene product. Moreover, this rapidity of gB expression was further illustrated via rapid priming of naïve transgenic CD8(+) T cells in vivo after HSV-1 infection of mice. These results establish that gB is expressed rapidly following HSV-1 infection, at levels capable of effectively stimulating CD8(+) T cells.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Transferência Adotiva , Animais , Herpes Simples/virologia , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeos/imunologia , Proteínas do Envelope Viral/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...