Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACC Basic Transl Sci ; 9(2): 260-277, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38510714

RESUMO

Despite advances in care, cardiovascular diseases remain the leading cause of death worldwide. As a result, identifying suitable biomarkers for early diagnosis and improving therapeutic and diagnostic strategies is crucial. Because of their significant advantages over other therapeutic approaches, nucleic-based therapies, particularly aptamers, are gaining increased attention. Aptamers are innovative synthetic polymers or oligomers of single-stranded DNA (ssDNA) or RNA molecules that can form 3-dimensional structures and thus interact with their targets with high specificity and affinity. Furthermore, they outperform classical protein-based antibodies in terms of in vitro selection, production, ease of modification and conjugation, high stability, low immunogenicity, and suitability for nanoparticle functionalization for targeted drug delivery. This work aims to review the advances made in the aptamers' field in biomarker detection, diagnosis, imaging, and targeted therapy, which highlight their huge potential in the management of cardiovascular diseases.

2.
J Am Coll Cardiol ; 83(1): 47-59, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38171710

RESUMO

BACKGROUND: The lack of disease-modifying drugs is one of the major unmet needs in patients with heart failure (HF). Peptides are highly selective molecules with the potential to act directly on cardiomyocytes. However, a strategy for effective delivery of therapeutics to the heart is lacking. OBJECTIVES: In this study, the authors sought to assess tolerability and efficacy of an inhalable lung-to-heart nano-in-micro technology (LungToHeartNIM) for cardiac-specific targeting of a mimetic peptide (MP), a first-in-class for modulating impaired L-type calcium channel (LTCC) trafficking, in a clinically relevant porcine model of HF. METHODS: Heart failure with reduced ejection fraction (HFrEF) was induced in Göttingen minipigs by means of tachypacing over 6 weeks. In a setting of overt HFrEF (left ventricular ejection fraction [LVEF] 30% ± 8%), animals were randomized and treatment was started after 4 weeks of tachypacing. HFrEF animals inhaled either a dry powder composed of mannitol-based microparticles embedding biocompatible MP-loaded calcium phosphate nanoparticles (dpCaP-MP) or the LungToHeartNIM only (dpCaP without MP). Efficacy was evaluated with the use of echocardiography, invasive hemodynamics, and biomarker assessment. RESULTS: DpCaP-MP inhalation restored systolic function, as shown by an absolute LVEF increase over the treatment period of 17% ± 6%, while reversing cardiac remodeling and reducing pulmonary congestion. The effect was recapitulated ex vivo in cardiac myofibrils from treated HF animals. The treatment was well tolerated, and no adverse events occurred. CONCLUSIONS: The overall tolerability of LungToHeartNIM along with the beneficial effects of the LTCC modulator point toward a game-changing treatment for HFrEF patients, also demonstrating the effective delivery of a therapeutic peptide to the diseased heart.


Assuntos
Insuficiência Cardíaca , Animais , Doença Crônica , Pulmão , Peptídeos , Volume Sistólico , Suínos , Porco Miniatura , Função Ventricular Esquerda
3.
J Funct Biomater ; 14(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37103279

RESUMO

Recently, there has been increasing interest in developing biocompatible inhalable nanoparticle formulations, as they have enormous potential for treating and diagnosing lung disease. In this respect, here, we have studied superparamagnetic iron-doped calcium phosphate (in the form of hydroxyapatite) nanoparticles (FeCaP NPs) which were previously proved to be excellent materials for magnetic resonance imaging, drug delivery and hyperthermia-related applications. We have established that FeCaP NPs are not cytotoxic towards human lung alveolar epithelial type 1 (AT1) cells even at high doses, thus proving their safety for inhalation administration. Then, D-mannitol spray-dried microparticles embedding FeCaP NPs have been formulated, obtaining respirable dry powders. These microparticles were designed to achieve the best aerodynamic particle size distribution which is a critical condition for successful inhalation and deposition. The nanoparticle-in-microparticle approach resulted in the protection of FeCaP NPs, allowing their release upon microparticle dissolution, with dimensions and surface charge close to the original values. This work demonstrates the use of spray drying to provide an inhalable dry powder platform for the lung delivery of safe FeCaP NPs for magnetically driven applications.

4.
J Cardiovasc Med (Hagerstown) ; 24(Suppl 1): e3-e14, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729582

RESUMO

Cardiometabolic diseases still represent a major cause of mortality worldwide. In addition to pharmacological approaches, lifestyle interventions can also be adopted for the prevention of these morbid conditions. Lifestyle changes include exercise and dietary restriction protocols, such as calorie restriction and intermittent fasting, which were shown to delay cardiovascular ageing and elicit health-promoting effects in preclinical models of cardiometabolic diseases. Beneficial effects are mediated by the restoration of multiple molecular mechanisms in heart and vessels that are compromised by metabolic stress. Exercise and dietary restriction rescue mitochondrial dysfunction, oxidative stress and inflammation. They also improve autophagy. The result of these effects is a marked improvement of vascular and heart function. In this review, we provide a comprehensive overview of the molecular mechanisms involved in the beneficial effects of exercise and dietary restriction in models of diabetes and obesity. We also discuss clinical studies and gap in animal-to-human translation.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Animais , Humanos , Exercício Físico , Restrição Calórica , Estilo de Vida , Doenças Cardiovasculares/prevenção & controle
5.
Microbiol Res ; 263: 127152, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944357

RESUMO

Antibiotic resistance is a serious health and social problem that will have a substantial impact in the coming years on the world health and economy. Thus, the increasing demand for innovative antibiotics, has prompted many researchers in the medical, microbiological, and biochemical fields to exploit the properties of antimicrobial peptides (AMPs). When properly used, designed, and conveyed, AMPs can really represent a valid alternative to conventional drugs especially in situations that are particularly difficult to treat such as chronic infections found in Cystic Fibrosis (CF) patients. In this review we focused on the applications of AMPs in the specific field of CF, illustrating different types of peptides from natural, naturally modified, synthetic as well as the different strategies used to overcome the barriers, and the physiological conditions in which AMPs must operate.


Assuntos
Infecções Bacterianas , Fibrose Cística , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos Antimicrobianos , Infecções Bacterianas/tratamento farmacológico , Fibrose Cística/tratamento farmacológico , Resistência Microbiana a Medicamentos , Humanos , Testes de Sensibilidade Microbiana
7.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887048

RESUMO

Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.


Assuntos
Proteínas de Ancoragem à Quinase A , Cardiologia , Proteínas de Ancoragem à Quinase A/metabolismo , AMP Cíclico/metabolismo , Coração , Mitocôndrias/metabolismo , Biologia Molecular
8.
Shock ; 57(6): 318-325, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35271535

RESUMO

AIM: Sepsis-induced cardiomyopathy is commonplace and carries an increased risk of death. Melusin, a cardiac muscle-specific chaperone, exerts cardioprotective function under varied stressful conditions through activation of the AKT pathway. The objective of this study was to determine the role of melusin in the pathogenesis of lipopolysaccharide (LPS)-induced cardiac dysfunction and to explore its signaling pathway for the identification of putative therapeutic targets. METHODS AND RESULTS: Prospective, randomized, controlled experimental study in a research laboratory. Melusin overexpressing (MelOV) and wild-type (MelWT) mice were used. MelOV and MelWT mice were injected intraperitoneally with LPS. Cardiac function was assessed using trans-thoracic echocardiography. Myocardial expression of L-type calcium channel (LTCC), phospho-Akt and phospho-Gsk3-b were also measured. In separate experiments, wild-type mice were treated post-LPS challenge with the allosteric Akt inhibitor Arq092 and a mimetic peptide (R7W-MP) targeting the LTCC. The impact of these therapies on protein-protein interactions, cardiac function, and survival was assessed. MelOV mice had limited derangement in cardiac function after LPS challenge. Protection was associated with higher Akt and Gsk3-b phosphorylation and restored LTCC density. Pharmacological inhibition of Akt activity reversed melusin-dependent cardiac protection. Treatment with R7W-MP preserved cardiac function in wild-type mice after LPS challenge and significantly improved survival. CONCLUSIONS: This study identifies AKT / Melusin as a key pathway for preserving cardiac function following LPS challenge. The cell-permeable mimetic peptide (R7W-MP) represents a putative therapeutic for sepsis-induced cardiomyopathy.


Assuntos
Canais de Cálcio Tipo L , Cardiomiopatias , Proteínas do Citoesqueleto , Ventrículos do Coração , Proteínas Musculares , Contração Miocárdica , Sepse , Animais , Camundongos , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/genética , Sepse/metabolismo
9.
J Inorg Biochem ; 230: 111751, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35151101

RESUMO

The use of inhalable nanoparticles (NPs) for cystic fibrosis (CF) has been advocated as a promising tool to improve the efficacy of antimicrobials taking advantage of their ability to penetrate airway mucus and pathogen biofilm and to release the drug in or in proximity to the enclosed bacteria. Here, inhalable calcium phosphate (CaP) NPs were functionalized with colistin (Col) which is one of the most active antimicrobials against Gram-negative bacteria. The adsorption kinetic and isotherm of Col on CaP-NPs were investigated and fitted according to different mathematical models and revealed an electrostatic interaction between positively charged amine groups of Col and negatively charged surface of CaP-NPs. The maximum Col payload was of about 50 mg g-1 of CaP-NPs. After functionalization, despite an increase of size (213 vs 95 nm), in citrate solution, CaP-NPs maintained a dimension and surface charge considered suitable for crossing mucus barrier. CaP-NPs do not interact with mucin and are able to permeate a layer of artificial mucus. In vitro tests on pulmonary cells demonstrated that CaP-NPs are not cytotoxic up to a concentration of 125 µg mL-1. The antimicrobial and antibiofilm activity of Col loaded CaP-NPs tested on Pseudomonas aeruginosa RP73, a clinical strain isolated from a CF patient, was similar to that of free Col demonstrating that the therapeutic effect of Col adsorbed on CaP-NPs was retained. This work represents the first attempt to use CaP-NPs as delivery system for the CF treatment. The encouraging results open the way to further studies.


Assuntos
Fibrose Cística , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Fosfatos de Cálcio/farmacologia , Colistina/farmacologia , Colistina/uso terapêutico , Fibrose Cística/tratamento farmacológico , Humanos , Pseudomonas aeruginosa
10.
Nat Commun ; 13(1): 6, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013167

RESUMO

Myocardial infarction causes 7.3 million deaths worldwide, mostly for fibrillation that electrically originates from the damaged areas of the left ventricle. Conventional cardiac bypass graft and percutaneous coronary interventions allow reperfusion of the downstream tissue but do not counteract the bioelectrical alteration originated from the infarct area. Genetic, cellular, and tissue engineering therapies are promising avenues but require days/months for permitting proper functional tissue regeneration. Here we engineered biocompatible silicon carbide semiconductive nanowires that synthetically couple, via membrane nanobridge formations, isolated beating cardiomyocytes over distance, restoring physiological cell-cell conductance, thereby permitting the synchronization of bioelectrical activity in otherwise uncoupled cells. Local in-situ multiple injections of nanowires in the left ventricular infarcted regions allow rapid reinstatement of impulse propagation across damaged areas and recover electrogram parameters and conduction velocity. Here we propose this nanomedical intervention as a strategy for reducing ventricular arrhythmia after acute myocardial infarction.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos/fisiologia , Nanofios , Arritmias Cardíacas/terapia , Compostos Inorgânicos de Carbono , Ventrículos do Coração , Humanos , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Compostos de Silício
12.
Pharmaceutics ; 13(11)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34834240

RESUMO

Inhalation of Calcium Phosphate nanoparticles (CaPs) has recently unmasked the potential of this nanomedicine for a respiratory lung-to-heart drug delivery targeting the myocardial cells. In this work, we investigated the development of a novel highly respirable dry powder embedding crystalline CaPs. Mannitol was selected as water soluble matrix excipient for constructing respirable dry microparticles by spray drying technique. A Quality by Design approach was applied for understanding the effect of the feed composition and spraying feed rate on typical quality attributes of inhalation powders. The in vitro aerodynamic behaviour of powders was evaluated using a medium resistance device. The inner structure and morphology of generated microparticles were also studied. The 1:4 ratio of CaPs/mannitol led to the generation of hollow microparticles, with the best aerodynamic performance. After microparticle dissolution, the released nanoparticles kept their original size.

13.
Elife ; 102021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34558411

RESUMO

Myopalladin (MYPN) is a striated muscle-specific immunoglobulin domain-containing protein located in the sarcomeric Z-line and I-band. MYPN gene mutations are causative for dilated (DCM), hypertrophic, and restrictive cardiomyopathy. In a yeast two-hybrid screening, MYPN was found to bind to titin in the Z-line, which was confirmed by microscale thermophoresis. Cardiac analyses of MYPN knockout (MKO) mice showed the development of mild cardiac dilation and systolic dysfunction, associated with decreased myofibrillar isometric tension generation and increased resting tension at longer sarcomere lengths. MKO mice exhibited a normal hypertrophic response to transaortic constriction (TAC), but rapidly developed severe cardiac dilation and systolic dysfunction, associated with fibrosis, increased fetal gene expression, higher intercalated disc fold amplitude, decreased calsequestrin-2 protein levels, and increased desmoplakin and SORBS2 protein levels. Cardiomyocyte analyses showed delayed Ca2+ release and reuptake in unstressed MKO mice as well as reduced Ca2+ spark amplitude post-TAC, suggesting that altered Ca2+ handling may contribute to the development of DCM in MKO mice.


Assuntos
Cardiomiopatia Dilatada/genética , Proteínas Musculares/genética , Pressão/efeitos adversos , Animais , Cálcio/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Conectina/metabolismo , Masculino , Camundongos Knockout , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Miocárdio , Miócitos Cardíacos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sarcômeros , Técnicas do Sistema de Duplo-Híbrido
15.
Mol Imaging ; 2021: 6677847, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746630

RESUMO

Molecular imaging holds great promise in the noninvasive monitoring of several diseases with nanoparticles (NPs) being considered an efficient imaging tool for cancer, central nervous system, and heart- or bone-related diseases and for disorders of the mononuclear phagocytic system (MPS). In the present study, we used an iron-based nanoformulation, already established as an MRI/SPECT probe, as well as to load different biomolecules, to investigate its potential for nuclear planar and tomographic imaging of several target tissues following its distribution via different administration routes. Iron-doped hydroxyapatite NPs (FeHA) were radiolabeled with the single photon γ-emitting imaging agent [99mTc]TcMDP. Administration of the radioactive NPs was performed via the following four delivery methods: (1) standard intravenous (iv) tail vein, (2) iv retro-orbital injection, (3) intratracheal (it) instillation, and (4) intrarectal installation (pr). Real-time, live, fast dynamic screening studies were performed on a dedicated bench top, mouse-sized, planar SPECT system from t = 0 to 1 hour postinjection (p.i.), and consequently, tomographic SPECT/CT imaging was performed, for up to 24 hours p.i. The administration routes that have been studied provide a wide range of possible target tissues, for various diseases. Studies can be optimized following this workflow, as it is possible to quickly assess more parameters in a small number of animals (injection route, dosage, and fasting conditions). Thus, such an imaging protocol combines the strengths of both dynamic planar and tomographic imaging, and by using iron-based NPs of high biocompatibility along with the appropriate administration route, a potential diagnostic or therapeutic effect could be attained.


Assuntos
Nanopartículas , Animais , Nanopartículas Magnéticas de Óxido de Ferro , Camundongos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Fluxo de Trabalho
16.
Br J Pharmacol ; 178(10): 2060-2076, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32294237

RESUMO

The process of mitochondrial dynamics is emerging as a core player in cardiovascular homeostasis. This process refers to the co-ordinated cycles of biogenesis, fusion, fission and degradation to which mitochondria constantly undergo to maintain their integrity, distribution and size. These mechanisms represent an early response to mitochondrial stress, confining organelle portions that are irreversibly damaged and preserving mitochondrial function. Accumulating evidence demonstrates that impairment in mitochondrial dynamics leads to myocardial damage and cardiac disease progression in a variety of disease models, including pressure overload, ischaemia/reperfusion and metabolic disturbance. These findings suggest that modulation of mitochondrial dynamics may be considered as a valid therapeutic strategy in cardiovascular diseases. In this review, we discuss the current evidence about the role of mitochondrial dynamics in cardiac pathophysiology, with a particular focus on the mechanisms underlying the development of cardiac hypertrophy and heart failure, metabolic and genetic cardiomyopathies, ischaemia/reperfusion injury, atherosclerosis and ischaemic stroke. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.


Assuntos
Isquemia Encefálica , Doenças Cardiovasculares , Acidente Vascular Cerebral , Humanos , Dinâmica Mitocondrial , Miocárdio
17.
Int J Mol Sci ; 21(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054029

RESUMO

Despite important advances in diagnosis and treatment, heart failure (HF) remains a syndrome with substantial morbidity and dismal prognosis. Although implementation and optimization of existing technologies and drugs may lead to better management of HF, new or alternative strategies are desirable. In this regard, basic science is expected to give fundamental inputs, by expanding the knowledge of the pathways underlying HF development and progression, identifying approaches that may improve HF detection and prognostic stratification, and finding novel treatments. Here, we discuss recent basic science insights that encompass major areas of translational research in HF and have high potential clinical impact.


Assuntos
Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Animais , Autofagia , Gerenciamento Clínico , Sistemas de Liberação de Medicamentos , Predisposição Genética para Doença , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Humanos , Inflamação/diagnóstico , Inflamação/genética , Inflamação/patologia , Inflamação/terapia , Itália , Microbiota , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Prognóstico , Sociedades Médicas , Pesquisa Translacional Biomédica
18.
Front Physiol ; 11: 616819, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488405

RESUMO

Brugada syndrome (BrS) is an inherited arrhythmogenic disease that may lead to sudden cardiac death in young adults with structurally normal hearts. No pharmacological therapy is available for BrS patients. This situation highlights the urgent need to overcome current difficulties by developing novel groundbreaking curative strategies. BrS has been associated with mutations in 18 different genes of which loss-of-function (LoF) CACNA1C mutations constitute the second most common cause. Here we tested the hypothesis that BrS associated with mutations in the CACNA1C gene encoding the L-type calcium channel (LTCC) pore-forming unit (Cavα1.2) is functionally reverted by administration of a mimetic peptide (MP), which through binding to the LTCC chaperone beta subunit (Cavß2) restores the physiological life cycle of aberrant LTCCs. Two novel Cavα1.2 mutations associated with BrS were identified in young individuals. Transient transfection in heterologous and cardiac cells showed LoF phenotypes with reduced Ca2+ current (ICa). In HEK293 cells overexpressing the two novel Cavα1.2 mutations, Western blot analysis and cell surface biotinylation assays revealed reduced Cavα1.2 protein levels at the plasma membrane for both mutants. Nano-BRET, Nano-Luciferase assays, and confocal microscopy analyses showed (i) reduced affinity of Cavα1.2 for its Cavß2 chaperone, (ii) shortened Cavα1.2 half-life in the membrane, and (iii) impaired subcellular localization. Treatment of Cavα1.2 mutant-transfected cells with a cell permeant MP restored channel trafficking and physiologic channel half-life, thereby resulting in ICa similar to wild type. These results represent the first step towards the development of a gene-specific treatment for BrS due to defective trafficking of mutant LTCC.

19.
EMBO Mol Med ; 11(12): e11115, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31680489

RESUMO

Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease accompanied by structural and contractile alterations. We identified a rare c.740C>T (p.T247M) mutation in ACTN2, encoding α-actinin 2 in a HCM patient, who presented with left ventricular hypertrophy, outflow tract obstruction, and atrial fibrillation. We generated patient-derived human-induced pluripotent stem cells (hiPSCs) and show that hiPSC-derived cardiomyocytes and engineered heart tissues recapitulated several hallmarks of HCM, such as hypertrophy, myofibrillar disarray, hypercontractility, impaired relaxation, and higher myofilament Ca2+ sensitivity, and also prolonged action potential duration and enhanced L-type Ca2+ current. The L-type Ca2+ channel blocker diltiazem reduced force amplitude, relaxation, and action potential duration to a greater extent in HCM than in isogenic control. We translated our findings to patient care and showed that diltiazem application ameliorated the prolonged QTc interval in HCM-affected son and sister of the index patient. These data provide evidence for this ACTN2 mutation to be disease-causing in cardiomyocytes, guiding clinical therapy in this HCM family. This study may serve as a proof-of-principle for the use of hiPSC for personalized treatment of cardiomyopathies.


Assuntos
Actinina/genética , Cardiomiopatia Hipertrófica/genética , Animais , Modelos Animais de Doenças , Humanos , Síndrome do QT Longo/genética , Mutação , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...