Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
IUBMB Life ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011777

RESUMO

Cryomyces antarcticus, a melanized cryptoendolithic fungus endemic to Antarctica, can tolerate environmental conditions as severe as those in space. Particularly, its ability to withstand ionizing radiation has been attributed to the presence of thick and highly melanized cell walls, which-according to a previous investigation-may contain both 1,8-dihydroxynaphthalene (DHN) and L-3,4 dihydroxyphenylalanine (L-DOPA) melanin. The genes putatively involved in the synthesis of DHN melanin were identified in the genome of C. antarcticus. Most important is capks1 encoding a non-reducing polyketide synthase (PKS) and being the ortholog of the functionally characterized kppks1 from the rock-inhabiting fungus Knufia petricola. The co-expression of CaPKS1 or KpPKS1 with a 4'-phosphopantetheinyl transferase in Saccharomyces cerevisiae resulted in the formation of a yellowish pigment, suggesting that CaPKS1 is the enzyme providing the precursor for DHN melanin. To dissect the composition and function of the melanin layer in the outer cell wall of C. antarcticus, non-melanized mutants were generated by CRISPR/Cas9-mediated genome editing. Notwithstanding its slow growth (up to months), three independent non-melanized Δcapks1 mutants were obtained. The mutants exhibited growth similar to the wild type and a light pinkish pigmentation, which is presumably due to carotenoids. Interestingly, visible light had an adverse effect on growth of both melanized wild-type and non-melanized Δcapks1 strains. Further evidence that light can pass the melanized cell walls derives from a mutant expressing a H2B-GFP fusion protein, which can be detected by fluorescence microscopy. In conclusion, the study reports on the first genetic manipulation of C. antarcticus, resulting in non-melanized mutants and demonstrating that the melanin is rather of the DHN type. These mutants will allow to elucidate the relevance of melanization for surviving extreme conditions found in the natural habitat as well as in space.

2.
Life (Basel) ; 11(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833088

RESUMO

The success of an astrobiological search for life campaign on Mars, or other planetary bodies in the Solar System, relies on the detectability of past or present microbial life traces, namely, biosignatures. Spectroscopic methods require little or no sample preparation, can be repeated almost endlessly, and can be performed in contact or even remotely. Such methods are therefore ideally suited to use for the detection of biosignatures, which can be confirmed with supporting instrumentation. Here, we discuss the use of Raman and Fourier Transform Infrared (FT-IR) spectroscopies for the detection and characterization of biosignatures from colonies of the fungus Cryomyces antarcticus, grown on Martian analogues and exposed to increasing doses of UV irradiation under dried conditions. The results report significant UV-induced DNA damage, but the non-exceeding of thresholds for allowing DNA amplification and detection, while the spectral properties of the fungal melanin remained unaltered, and pigment detection and identification was achieved via complementary analytical techniques. Finally, this work found that fungal cell wall compounds, likely chitin, were not degraded, and were still detectable even after high UV irradiation doses. The implications for the preservation and detection of biosignatures in extraterrestrial environments are discussed.

3.
Extremophiles ; 25(5-6): 437-458, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34586500

RESUMO

One of the main objectives of astrobiological research is the investigation of the habitability of other planetary bodies. Since space exploration missions are expensive and require long-term organization, the preliminary study of terrestrial environments is an essential step to prepare and support exploration missions. The Earth hosts a multitude of extreme environments whose characteristics resemble celestial bodies in our Solar System. In these environments, the physico-chemical properties partly match extraterrestrial environments and could clarify limits and adaptation mechanisms of life, the mineralogical or geochemical context, and support and interpret data sent back from planetary bodies. One of the best terrestrial analogues is Antarctica, whose conditions lie on the edge of habitability. It is characterized by a cold and dry climate (Onofri et al., Nova Hedwigia 68:175-182, 1999), low water availability, strong katabatic winds, salt concentration, desiccation, and high radiation. Thanks to the harsh conditions like those in other celestial bodies, Antarctica offers good terrestrial analogues for celestial body (Mars or icy moons; Léveillé, CR Palevol 8:637-648, https://doi.org/10.1016/j.crpv.2009.03.005 , 2009). The continent could be distinguished into several habitats, each with characteristics similar to those existing on other bodies. Here, we reported a description of each simulated parameter within the habitats, in relation to each of the simulated extraterrestrial environments.


Assuntos
Marte , Planetas , Regiões Antárticas , Exobiologia , Meio Ambiente Extraterreno , Ambientes Extremos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...