Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 287: 127833, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39032265

RESUMO

In this study, we investigated the biocontrol activity of the P. mediterranea strain PVCT 3C against Mal secco, a severe disease of citrus caused by the vascular fungus Plenodomus tracheiphilus. In vitro, bacterial diffusible compounds, volatile organic compounds and culture filtrates produced by PVCT 3C reduced the mycelial growth and conidial germination of P. tracheiphilus, also affecting the mycelial pigmentation. The application of bacterial suspensions by leaf-spraying before the inoculation with the pathogen on plants of the highly susceptible species sour orange and lemon led to an overall reduction in incidence and disease index, above all during the early disease stage. PVCT 3C genome was subjected to whole-genome shotgun sequencing to study the molecular mechanisms of action of this strain. In silico annotation of biosynthetic gene clusters for secondary metabolites revealed the presence of numerous clusters encoding antimicrobial compounds (e.g. cyclic lipopeptides, hydrogen cyanide, siderophores) and candidate novel products. During the asymptomatic disease phase (seven days post-inoculation), bacterial treatments interfered with the expression of different fungal genes, as assessed with an NGS and de novo assembly RNA-seq approach. These results suggest that P. mediterranea PVCT 3C or its secondary metabolites may offer a potential effective and sustainable alternative to contain P. tracheiphilus infections via integrated management.

2.
Microbiol Resour Announc ; 13(7): e0027324, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38860797

RESUMO

Here, we report the draft genome sequence of Xanthomonas arboricola pv. pruni strain PVCT 262.1, isolated from almond (Prunus dulcis) leaves affected by bacterial spots in Italy in 2020. Genome size is 5,076,418 bp and G+C content is 65.44%. A total of 4,096 protein-coding genes and 92 RNAs are predicted.

3.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397068

RESUMO

The lemon industry in the Mediterranean basin is strongly threatened by "mal secco" disease (MSD) caused by the fungus Plenodomus tracheiphlilus. Leaf pretreatments with Pseudomonas mediterranea 3C have been proposed as innovative tools for eco-sustainable interventions aimed at controlling the disease. In this study, by exploiting the results of previously performed RNAseq analysis, WCGNA was conducted among gene expression patterns in both inoculated (Pt) and pretreated and fungus-inoculated lemon plants (Citrus limon L.) (3CPt), and two indicators of fungal infection, i.e., the amount of fungus DNA measured in planta and the disease index (DI). The aims of this work were (a) to identify gene modules significantly associated with those traits, (b) to construct co-expression networks related to mal secco disease; (c) to define the effect and action mechanisms of P. mediterranea by comparing the networks. The results led to the identification of nine hub genes in the networks, with three of them belonging to receptor-like kinases (RLK), such as HERK1, CLAVATA1 and LRR, which play crucial roles in plant-pathogen interaction. Moreover, the comparison between networks indicated that the expression of those receptors is not induced in the presence of P. mediterranea, suggesting how powerful WCGNA is in discovering crucial genes that must undergo further investigation and be eventually knocked out.


Assuntos
Ascomicetos , Citrus , Citrus/genética , Citrus/microbiologia , Pseudomonas/genética
5.
Plants (Basel) ; 12(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840250

RESUMO

Citrus production is worldwide threatened by Colletotrichum spp., causal agents of pre- and postharvest anthracnose. The recent limitation on the use of copper-based antimicrobials, due to its demonstrated noxious effect on the environment, makes the control of this pathogen difficult. Thus, alternative products able to reduce/phase out copper in organic citrus farming are needed. In this study, the efficacy of 11 commercial alternative products were evaluated in vitro, in growth chamber, in open field and in postharvest environments. In vitro, mineral fertilizers, basic substances, essential oils, plant defense stimulators and biological control agents were able to inhibit the mycelial growth with variable efficacy. On artificially infected citrus fruit, almost all tested products significantly reduced disease incidence and severity, but with lower efficacy than copper. The efficacy of mineral fertilizers-based Kiram and Vitibiosap 458 Plus, citrus essential oil-based Prev-Am Plus and chitosan-based Biorend was confirmed in open field trials, in naturally infected citrus fruits. In these trials Biorend was the best alternative product, significantly reducing disease incidence (71% DI reduction) with better results than copper (47.5%). Field treatments reduced the incidence and severity of the disease in postharvest conditions, especially in fruits field-treated three times. Overall, selected products tested in open field can represent a good alternative to copper compounds in the view of future limitation of its use.

6.
Int J Food Microbiol ; 379: 109861, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-35930961

RESUMO

Several bacterial and fungal diseases affect greenhouse-grown tomato crops, causing severe annual yield losses worldwide. The need to reduce chemical compound applications has encouraged the search of alternative approach for the control of tomato diseases, including the use of biological control agents. The presence of total and beneficial microbial populations was investigated on the surface and in the pulp of seven cultivars of tomato fruit coming from eleven greenhouses in the Pachino district (south-east of Sicily), recognized by the European Community with the "Protected Geographical Indication" label. Principal component analysis (PCA) showed that epiphytic and endophytic microbial populations clustered into groups according to the areas of origin. Approximately 240 tomato fruit-associated bacterial isolates were selected and a high percentage of them showed antagonistic activity against Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria pv. perforans, Botrytis cinerea and Alternaria alternata. Analysis of the 16S rRNA gene sequences revealed a predominance of bacteria in Bacillus and Pseudomonas genera, followed by Citrobacter and Enterobacter. The presence of these genera differed according to the geographical areas of tomato samples, whereas their antagonistic capabilities varied according to the five tomato pathogens. The in vitro effectiveness of eight representative bacterial strains belonging to Pseudomonas, Bacillus and Enterobacter genera was confirmed in in vivo assays, carried out on tomato fruit artificially inoculated with A. alternata and B. cinerea. Altogether, these results revealed differences in population density of native microbiota of "Pomodoro di Pachino" fruits and allowed the selection of antagonistic bacterial strains that can be applied in field and in postharvest conditions as alternatives to chemical compounds.


Assuntos
Solanum lycopersicum , Bactérias , Clavibacter , Frutas/microbiologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , RNA Ribossômico 16S/genética , Xanthomonas
7.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955951

RESUMO

The cultivation of soilless tomato in greenhouses has increased considerably, but little is known about the assembly of the root microbiome compared to plants grown in soil. To obtain such information, we constructed an assay in which we traced the bacterial and fungal communities by amplicon-based metagenomics during the cultivation chain from nursery to greenhouse. In the greenhouse, the plants were transplanted either into agricultural soil or into coconut fiber bags (soilless). At the phylum level, bacterial and fungal communities were primarily constituted in all microhabitats by Proteobacteria and Ascomycota, respectively. The results showed that the tomato rhizosphere microbiome was shaped by the substrate or soil in which the plants were grown. The microbiome was different particularly in terms of the bacterial communities. In agriculture, enrichment has been observed in putative biological control bacteria of the genera Pseudomonas and Bacillus and in potential phytopathogenic fungi. Overall, the study describes the different shaping of microbial communities in the two cultivation methods.


Assuntos
Ascomicetos , Microbiota , Solanum lycopersicum , Bactérias/genética , Solanum lycopersicum/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Solo , Microbiologia do Solo
8.
Microorganisms ; 10(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35630430

RESUMO

Xanthomonas citri pv. citri (Xcc) and X. citri pv. aurantifolii (Xca) are causal agents of Citrus Bacterial Canker (CBC), a devastating disease that severely affects citrus plants. They are harmful organisms not reported in Europe or the Mediterranean Basin. Host plants are in the Rutaceae family, including the genera Citrus, Poncirus, and Fortunella, and their hybrids. In addition, other genera of ornamental interest are reported as susceptible, but results are not uniform and sometimes incongruent. We evaluated the susceptibility of 32 ornamental accessions of the Rutaceae family belonging to the genera Citrus, Fortunella, Atalantia, Clausena, Eremocitrus, Glycosmis, Microcitrus, Murraya, Casimiroa, Calodendrum, and Aegle, and three hybrids to seven strains of Xcc and Xca. Pathotyping evaluation was assessed by scoring the symptomatic reactions on detached leaves. High variability in symptoms and bacterial population was shown among the different strains in the different hosts, indicative of complex host-pathogen interactions. The results are mostly consistent with past findings, with the few discrepancies probably due to our more complete experimental approach using multiple strains of the pathogen and multiple hosts. Our work supports the need to regulate non-citrus Rutaceae plant introductions into areas, like the EU and Mediterranean, that are currently free of this economically important pathogen.

9.
Biology (Basel) ; 11(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35053136

RESUMO

P. aeruginosa strain FG106 was isolated from the rhizosphere of tomato plants and identified through morphological analysis, 16S rRNA gene sequencing, and whole-genome sequencing. In vitro and in vivo experiments demonstrated that this strain could control several pathogens on tomato, potato, taro, and strawberry. Volatile and non-volatile metabolites produced by the strain are known to adversely affect the tested pathogens. FG106 showed clear antagonism against Alternaria alternata, Botrytis cinerea, Clavibacter michiganensis subsp. michiganensis, Phytophthora colocasiae, P. infestans, Rhizoctonia solani, and Xanthomonas euvesicatoria pv. perforans. FG106 produced proteases and lipases while also inducing high phosphate solubilization, producing siderophores, ammonia, indole acetic acid (IAA), and hydrogen cyanide (HCN) and forming biofilms that promote plant growth and facilitate biocontrol. Genome mining approaches showed that this strain harbors genes related to biocontrol and growth promotion. These results suggest that this bacterial strain provides good protection against pathogens of several agriculturally important plants via direct and indirect modes of action and could thus be a valuable bio-control agent.

11.
Front Microbiol ; 12: 681567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017321

RESUMO

Halophytic endophytes potentially contribute to the host's adaptation to adverse environments, improving its tolerance against various biotic and abiotic stresses. Here, we identified the culturable endophytic bacteria of three crop wild relative (CWR) halophytes: Cakile maritima, Matthiola tricuspidata, and Crithmum maritimum. In the present study, the potential of these isolates to improve crop adaptations to various stresses was investigated, using both in vitro and in-planta approaches. Endophytic isolates were identified by their 16S rRNA gene sequence and evaluated for their ability to: grow in vitro in high levels of NaCl; inhibit the growth of the economically important phytopathogens Verticillium dahliae, Ralstonia solanacearum, and Clavibacter michiganensis and the human pathogen Aspergillus fumigatus; provide salt tolerance in-planta; and provide growth promoting effect in-planta. Genomes of selected isolates were sequenced. In total, 115 endophytic isolates were identified. At least 16 isolates demonstrated growth under increased salinity, plant growth promotion and phytopathogen antagonistic activity. Three showed in-planta suppression of Verticillium growth. Furthermore, representatives of three novel species were identified: two Pseudomonas species and one Arthrobacter. This study provides proof-of-concept that the endophytes from CWR halophytes can be used as "bio-inoculants," for the enhancement of growth and stress tolerance in crops, including the high-salinity stress.

12.
Front Plant Sci ; 12: 637582, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927735

RESUMO

Tomato is subject to several diseases that affect both field- and greenhouse-grown crops. To select cost-effective potential biocontrol agents, we used laboratory throughput screening to identify bacterial strains with versatile characteristics suitable for multipurpose uses. The natural diversity of tomato root-associated bacterial communities was bioprospected under a real-world environment represented by an intensive tomato cultivation area characterized by extraseasonal productions in the greenhouse. Approximately 400 tomato root-associated bacterial isolates, in majority Gram-negative bacteria, were isolated from three compartments: the soil close to the root surface (rhizosphere, R), the root surface (rhizoplane, RP), and the root interior (endorhizosphere, E). A total of 33% of the isolates produced siderophores and were able to solubilize phosphates and grow on NA with 8% NaCl. A total of 30% of the root-associated bacteria showed antagonistic activity against all the tomato pathogens tested, i.e., Clavibacter michiganesis pv. michiganensis, Pseudomonas syringae pv. tomato, Pseudomonas corrugata and Xanthomonas euvesicatoria pv. perforans, and Fusarium oxysporum f. sp. lycopersici. We found that the sampling site rather than the root compartment of isolation influenced bacterial composition in terms of analyzed phenotype. This was demonstrated through a diversity analysis including general characteristics and PGPR traits, as well as biocontrol activity in vitro. Analysis of 16S rRNA gene (rDNA) sequencing of 77 culturable endophytic bacteria that shared multiple beneficial activity revealed a predominance of bacteria in Bacillales, Enterobacteriales, and Pseudomonadales. Their in vitro antagonistic activity showed that Bacillus species were significantly more active than the isolates in the other taxonomic group. In planta activity against phytopathogenic bacteria of a subset of Bacillus and Pseudomonas isolates was also assessed.

13.
Microorganisms ; 9(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923763

RESUMO

Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.

14.
Plants (Basel) ; 10(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513740

RESUMO

The biosynthesis of sweet orange anthocyanins is triggered by several environmental factors such as low temperature. Much less is known about the effect of biotic stress on anthocyanin production in sweet orange, although in other species anthocyanins are often indicated as "defense molecules". In this work, citrus fruits were inoculated with Penicillium digitatum, the causal agent of green mold, and the amount of anthocyanins and the expression of genes related to their biosynthesis was monitored by RT-real time PCR after 3 and 5 days from inoculation (DPI). Moreover, the status of cytosine methylation of DFR and RUBY promoter regions was investigated by McrBC digestion followed in real-time. Our results highlight that fungal infection induces anthocyanin production by activating the expression of several genes in the biosynthetic pathway. The induction of gene expression is accompanied by maintenance of high levels of methylation at the DFR and RUBY promoters in the inoculated fruits, thus suggesting that DNA methylation is not a repressive mark of anthocyanin related gene expression in sweet orange subjected to biotic stress. Finally, by measuring the expression levels of the Citrus DNA demethylase genes, we found that none of them is up-regulated in response to fungal infection, this result being in accordance with the observed maintenance of high-level DFR and Ruby promoter regions methylation.

15.
Bioengineering (Basel) ; 6(4)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739507

RESUMO

Some strains of Pseudomonas corrugata (Pco) and P. mediterranea (Pme) efficiently synthesize medium-chain-length polyhydroxyalkanoates elastomers (mcl-PHA) and extracellular products on related and unrelated carbon sources. Yield and composition are dependent on the strain, carbon source, fermentation process, and any additives. Selected Pco strains produce amorphous and sticky mcl-PHA, whereas strains of Pme produce, on high grade and partially refined biodiesel glycerol, a distinctive filmable PHA, very different from the conventional microbial mcl-PHA, suitable for making blends with polylactide acid. However, the yields still need to be improved and production costs lowered. An integrated process has been developed to recover intracellular mcl-PHA and extracellular bioactive molecules. Transcriptional regulation studies during PHA production contribute to understanding the metabolic potential of Pco and Pme strains. Data available suggest that pha biosynthesis genes and their regulations will be helpful to develop new, integrated strategies for cost-effective production.

16.
Nat Commun ; 9(1): 4894, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459421

RESUMO

Citrus is a globally important, perennial fruit crop whose rhizosphere microbiome is thought to play an important role in promoting citrus growth and health. Here, we report a comprehensive analysis of the structural and functional composition of the citrus rhizosphere microbiome. We use both amplicon and deep shotgun metagenomic sequencing of bulk soil and rhizosphere samples collected across distinct biogeographical regions from six continents. Predominant taxa include Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes. The core citrus rhizosphere microbiome comprises Pseudomonas, Agrobacterium, Cupriavidus, Bradyrhizobium, Rhizobium, Mesorhizobium, Burkholderia, Cellvibrio, Sphingomonas, Variovorax and Paraburkholderia, some of which are potential plant beneficial microbes. We also identify over-represented microbial functional traits mediating plant-microbe and microbe-microbe interactions, nutrition acquisition and plant growth promotion in citrus rhizosphere. The results provide valuable information to guide microbial isolation and culturing and, potentially, to harness the power of the microbiome to improve plant production and health.


Assuntos
Citrus/microbiologia , Microbiota/genética , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , DNA Espaçador Ribossômico/genética , Fungos/classificação , Fungos/genética , Metagenoma/genética , Metagenômica/classificação , Metagenômica/métodos , Filogenia , RNA Ribossômico 16S/genética
17.
Front Microbiol ; 9: 521, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662475

RESUMO

Cyclic lipopeptides (CLPs) are considered as some of the most important secondary metabolites in different plant-associated bacteria, thanks to their antimicrobial, cytotoxic, and surfactant properties. In this study, our aim was to investigate the role of the Quorum Sensing (QS) system, PcoI/PcoR, and the LuxR-type transcriptional regulator RfiA in CLP production in the phytopatogenic bacterium, Pseudomonas corrugata based on our previous work where we reported that the pcoR and rfiA mutants were devoid of the CLPs cormycin and corpeptin production. Due to the close genetic link between the QS system and the RfiA (rfiA is co-transcribed with pcoI), it was difficult to ascertain the specific regulatory role in the expression of target genes. A transcriptional approach was undertaken to identify the specific role of the PcoR and RfiA transcriptional regulators for the expression of genes involved in CLP production. The RNA-seq-based transcriptional analysis of the wild-type (WT) strain CFBP 5454 in comparison with GL2 (pcoR mutant) and GLRFIA (rfiA mutant) was performed in cultural conditions favoring CLP production. Differential gene expression revealed that 152 and 130 genes have significantly different levels of expression in the pcoR and rfiA mutants, respectively. Of these, the genes linked to the biosynthesis of CLPs and alginate were positively controlled by both PcoR and RfiA. Blast homology analysis showed that 19 genes in a large CLP biosynthetic cluster involved in the production of three antimicrobial peptides, which span approximately 3.5% of the genome, are strongly over-expressed in the WT strain. Thus, PcoR and RfiA function mainly as activators in the production of bioactive CLPs, in agreement with phenotype analysis of mutants. RNA-seq also revealed that almost all the genes in the structural/biosynthetic cluster of alginate exopolysaccharide (EPS) are under the control of the PcoR-RfiA regulon, as supported by the 10-fold reduction in total EPS yield isolated in both mutants in comparison to the parent strain. A total of 68 and 38 gene expressions was independently regulated by PcoR or RfiA proteins, respectively, but at low level. qPCR experiments suggest that growth medium and plant environment influence the expression of CLP and alginate genes.

18.
J Sci Food Agric ; 97(1): 65-73, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26916978

RESUMO

BACKGROUND: Grape contamination by several fungal species occurs during a vineyard's preharvest and harvest. Agronomic management and microclimatic conditions can affect fungi occurrence and epidemiology, thus explaining qualitative differences in mycoflora composition, including the presence of phytopathogenic or mycotoxigenic fungi. In this study a two-year grape, air and soil mycoflora monitoring programme was undertaken in vineyards on Mount Etna (eastern Sicily, Italy). The mycoflora composition was investigated at pea berry and veraison phenological phases from air and soil and at ripening from sample grapes. RESULTS: Mycoflora in air and soil varied according to the phenological stage. In the air samples, penicillia were dominant over aspergilli at the pea berry phase, but their ratio was inverted at early veraison. Black aspergilli (BA) were isolated from the vine environment and grape samples, where BA were represented mainly by Aspergillus niger aggregate, which showed no or low ochratoxin A (OTA) production. Aspergillus carbonarius was either not identified or identified at low frequency, although most of the isolates produced OTA. CONCLUSION: Monitoring focused on the environmental mycoflora composition and highlighted the good health profile of various Sicilian autochthonous grape cultivars. In addition, data suggest that the lower relative humidity occurring at the highest altitudes reduces BA incidence. © 2016 Society of Chemical Industry.


Assuntos
Microbiologia de Alimentos , Fungos/isolamento & purificação , Vitis/crescimento & desenvolvimento , Vitis/microbiologia , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Ocratoxinas/metabolismo , Filogenia , Sicília , Vinho/análise
19.
N Biotechnol ; 37(Pt A): 39-47, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27445200

RESUMO

Pseudomonas corrugata and P. mediterranea are soil inhabitant bacteria, generally living as endophytes on symptomless plants and bare soil, but also capable of causing plant diseases. They share a similar genome size and a high proteome similarity. P. corrugata produces many biomolecules which play an important role in bacterial cell survival and fitness. Both species produce different medium-chain-length PHAs (mcl-PHAs) from the bioconversion of glycerol to a transparent film in P. mediterranea and a sticky elastomer in P. corrugata. In this work, using RNA-seq we investigated the transcriptional profiles of both bacteria at the early stationary growth phase with glycerol as the carbon source. Quantitative analysis of P. mediterranea transcripts versus P. corrugata revealed that 1756 genes were differentially expressed. A total of 175 genes were significantly upregulated in P. mediterranea, while 217 were downregulated. The largest group of upregulated genes was related to transport systems and stress response, energy and central metabolism, and carbon metabolism. Expression levels of most genes coding for enzymes related to PHA biosynthesis and central metabolic pathways showed no differences or only slight variations in pyruvate metabolism. The most relevant result was the significantly increased expression in P. mediterranea of genes involved in alginate production, an important exopolysaccharide, which in other Pseudomonas spp. plays a key role as a virulence factor or in stress tolerance and shows many industrial applications. In conclusion, the results provide useful information on the co-production of mcl-PHAs and alginate from glycerol as carbon source by P. mediterranea in the design of new strategies of genetic regulation to improve the yield of bioproducts or bacterial fitness.


Assuntos
Poli-Hidroxialcanoatos/biossíntese , Pseudomonas/genética , Pseudomonas/metabolismo , Alginatos/metabolismo , Sequência de Bases , Vias Biossintéticas , Biotecnologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Glicerol/metabolismo , Doenças das Plantas/microbiologia , Poli-Hidroxialcanoatos/química , Polissacarídeos Bacterianos/biossíntese , Pseudomonas/patogenicidade , RNA Bacteriano/genética , Microbiologia do Solo
20.
Front Microbiol ; 6: 811, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300874

RESUMO

The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...