Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37176903

RESUMO

The present study focused on the molecular, morphological, and nutritional characterisation of a globe artichoke landrace at risk of genetic erosion still cultivated in the municipality of Orte (Lazio Region, Central Italy) and therefore named "Carciofo Ortano". Molecular analysis based on SSR and ISSR markers was carried out on 73 genotypes selected at random from 20 smallholdings located in the Orte countryside and 17 accessions of landraces/clones belonging to the main varietal types cultivated in Italy. The results confirmed that "Carciofo Ortano" belongs to the "Romanesco" varietal typology and revealed the presence within the landrace of two distinct genetic populations named Orte 1 and Orte 2. Despite the high level of within-population genetic variation detected, the two populations were genetically differentiated from each other and from the landraces/clones of the main varietal types cultivated in Italy. Morphological and nutritional characterisation was performed on representative genotypes for each of the two populations of the "Carciofo Ortano" and the four landraces/clones included in the varietal platform of the PGI "CARCIOFO ROMANESCO DEL LAZIO" used as reference genotypes ("Campagnano", "Castellammare", "C3", and "Grato 1"). Principal component analysis showed that, of the 43 morphological descriptors considered, 12, including plant height, head shape index, head yield, and earliness, allowed a clear grouping of genotypes, distinguishing Orte 1 and Orte 2 populations from the reference genotypes. Regarding the nutritional composition of heads, particular attention should be devoted to the Orte 2 genotypes for their high dietary fibre, inulin, flavonoid, and phenol content, a feature that could be highly appreciated by the market.

2.
Plants (Basel) ; 12(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36840092

RESUMO

Common bean cultivation has historically been a typical component of rural economies in Italy, particularly in mountainous and hilly zones along the Apennine ridge of the central and southern regions, where the production is focused on local landraces cultivated by small-scale farmers using low-input production systems. Such landraces are at risk of genetic erosion because of the recent socioeconomic changes in rural communities. One hundred fourteen accessions belonging to 66 landraces still being grown in the Lazio region were characterized using a multidisciplinary approach. This approach included morphological (seed traits), biochemical (phaseolin and phytohemagglutinin patterns), and molecular (microsatellite loci) analyses to investigate their genetic variation, structure, and distinctiveness, which will be essential for the implementation of adequate ex situ and in situ conservation strategies. Another objective of this study was to determine the original gene pool (Andean and Mesoamerican) of the investigated landraces and to evaluate the cross-hybridization events between the two ancestral gene pools in the P. vulgaris germplasm in the Lazio region. Molecular analyses on 456 samples (four for each of the 114 accessions) revealed that the P. vulgaris germplasm in the Lazio region exhibited a high level of genetic diversity (He = 0.622) and that the Mesoamerican and Andean gene pools were clearly differentiated, with the Andean gene pool prevailing (77%) and 12% of landraces representing putative hybrids between the two gene pools. A model-based cluster analysis based on the molecular markers highlighted three main groups in agreement with the phaseolin patterns and growth habit of landraces. The combined utilisation of morphological, biochemical, and molecular data allowed for the differentiation of all landraces and the resolution of certain instances of homonymy and synonymy. Furthermore, although a high level of homozygosity was found across all landraces, 32 of the 66 examined (49%) exhibited genetic variability, indicating that the analysis based on a single or few plants per landrace, as usually carried out, may provide incomplete information.

3.
BMC Plant Biol ; 18(1): 39, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29466943

RESUMO

CORRECTION: Following publication of the original article [1], it came to the attention of the authors that they had omitted to acknowledge the University of Parma. The Acknowledgement section should read as follows: "The authors kindly acknowledge the University of Parma (Department of Chemistry, Life Sciences and Environmental Sustainability; formerly Department of Life Sciences/Evolutionary and Functional Biology) for the transfer of funds obtained from the Ager project: GIALLUMI DELLA VITE: TECNOLOGIE INNOVATIVE PER LA DIAGNOSI E LO STUDIO DELLE INTERAZIONI PIANTA/PATOGENO, BANDO AGER VITICOLTURA DA VINO".

4.
BMC Plant Biol ; 17(1): 118, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28693415

RESUMO

BACKGROUND: Bois noir is an important disease of grapevine (Vitis vinifera L.), caused by phytoplasmas. An interesting, yet elusive aspect of the bois noir disease is "recovery", i.e., the spontaneous and unpredictable remission of symptoms and damage. Because conventional pest management is ineffective against bois noir, deciphering the molecular bases of recovery is beneficial. The present study aimed to understand whether salicylate- and jasmonate-defence pathways might have a role in the recovery from the bois noir disease of grapevine. RESULTS: Leaves from healthy, bois noir-diseased and bois noir-recovered plants were compared, both in the presence (late summer) and absence (late spring) of bois noir symptoms on the diseased plants. Analyses of salicylate and jasmonate contents, as well as the expression of genes involved in their biosynthesis, signalling and action, were evaluated. In symptomatic diseased plants (late summer), unlike symptomless plants (late spring), salicylate biosynthesis was increased and salicylate-responsive genes were activated. In contrast, jasmonate biosynthesis and signalling genes were up-regulated both in recovered and diseased plants at all sampling dates. The activation of salicylate signalling in symptomatic plants might have antagonised the jasmonate-mediated defence response by suppressing the expression of jasmonate-responsive genes. CONCLUSIONS: Our results suggest that grapevine reacts to phytoplasma infection through salicylate-mediated signalling, although the resultant full activation of a salicylate-mediated response is apparently ineffective in conferring resistance against bois noir disease. Activation of the salicylate signalling pathway that is associated with the presence of bois noir phytoplasma seems to antagonise the jasmonate defence response, by failing to activate or suppressing both the expression of some jasmonate responsive genes that act downstream of the jasmonate biosynthetic pathway, as well as the first events of the jasmonate signalling pathway. On the other hand, activation of the entire jasmonate signalling pathway in recovered plants suggests the potential importance of jasmonate-regulated defences in preventing bois noir phytoplasma infections and the subsequent development of bois noir disease. Thus, on one hand, recovery could be achieved and maintained over time by preventing the activation of defence genes associated with salicylate signalling, and on the other hand, by activating jasmonate signalling and other defence responses.


Assuntos
Acetatos/metabolismo , Ciclopentanos/metabolismo , Interações Hospedeiro-Patógeno , Oxilipinas/metabolismo , Phytoplasma/fisiologia , Salicilatos/metabolismo , Vitis/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Doenças das Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima , Vitis/genética , Vitis/imunologia
5.
Plant Physiol ; 169(4): 2624-39, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438787

RESUMO

Plant response mechanisms to deficiency of a single nutrient, such as sulfur (S) or iron (Fe), have been described at agronomic, physiological, biochemical, metabolomics, and transcriptomic levels. However, agroecosystems are often characterized by different scenarios, in which combined nutrient deficiencies are likely to occur. Soils are becoming depleted for S, whereas Fe, although highly abundant in the soil, is poorly available for uptake because of its insolubility in the soil matrix. To this end, earlier reports showed that a limited S availability reduces Fe uptake and that Fe deficiency results in the modulation of sulfate uptake and assimilation. However, the mechanistic basis of this interaction remains largely unknown. Metabolite profiling of tomato (Solanum lycopersicum) shoots and roots from plants exposed to Fe, S, and combined Fe and S deficiency was performed to improve the understanding of the S-Fe interaction through the identification of the main players in the considered pathways. Distinct changes were revealed under the different nutritional conditions. Furthermore, we investigated the development of the Fe deficiency response through the analysis of expression of ferric chelate reductase, iron-regulated transporter, and putative transcription factor genes and plant sulfate uptake and mobilization capacity by analyzing the expression of genes encoding sulfate transporters (STs) of groups 1, 2, and 4 (SlST1.1, SlST1.2, SlST2.1, SlST2.2, and SlST4.1). We identified a high degree of common and even synergistic response patterns as well as nutrient-specific responses. The results are discussed in the context of current models of nutrient deficiency responses in crop plants.


Assuntos
Ferro/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Enxofre/metabolismo , Aminoácidos/metabolismo , Ácidos Carboxílicos/metabolismo , Cromatografia Gasosa , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Metaboloma , Metabolômica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Physiol Plant ; 152(4): 646-59, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24724721

RESUMO

This study addresses the question of the interference between iron (Fe) nutrition and cadmium (Cd) toxicity at the level of growth performance, phytosiderophores (PS) release, micronutrient accumulation and expression of genes involved in Fe homeostasis in barley seedlings, a plant with strategy II-based response to Fe shortage. Cd exposure induced responses similar to those of genuine Fe deficiency also in Fe-sufficient plants. Most genes involved in PS biosynthesis and secretion (HvNAS3, HvNAS4, HvNAS6, HvNAS7, HvNAAT-A, HvDMAS1 and HvTOM1) induced by Fe deprivation were also significantly upregulated in the presence of Cd under Fe sufficient conditions. Accordingly, the enhanced expression of these genes in roots under Cd exposure was accompanied by an increase of PS release. However, induced expression of HvIRO2 and the downregulation of HvIDEF1 and HvIRT1, after Cd exposure, suggested the presence of a pathway that induces HvIRO2-mediated PS biosynthesis under Cd stress, which probably is not simply caused by Fe deficiency. The downregulation of HvIRT1 and HvNramp5 may represent a protective mechanism at transcriptional level against further Cd uptake by these transporters. These results likely indicate that Cd itself may be able to activate Fe acquisition mechanism in an Fe-independent manner.


Assuntos
Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hordeum/efeitos dos fármacos , Ferro/metabolismo , Proteínas de Plantas/genética , Cádmio/análise , Regulação para Baixo , Hordeum/genética , Hordeum/metabolismo , Deficiências de Ferro , Peroxidação de Lipídeos , Modelos Biológicos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Sideróforos/genética , Sideróforos/metabolismo , Regulação para Cima
7.
J Integr Plant Biol ; 56(1): 88-100, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24119307

RESUMO

Characterization of the relationship between sulfur and iron in both Strategy I and Strategy II plants, has proven that low sulfur availability often limits plant capability to cope with iron shortage. Here it was investigated whether the adaptation to iron deficiency in tomato (Solanum lycopersicum L.) plants was associated with an increased root sulfate uptake and translocation capacity, and modified dynamics of total sulfur and thiols accumulation between roots and shoots. Most of the tomato sulfate transporter genes belonging to Groups 1, 2, and 4 were significantly upregulated in iron-deficient roots, as it commonly occurs under S-deficient conditions. The upregulation of the two high affinity sulfate transporter genes, SlST1.1 and SlST1.2, by iron deprivation clearly suggests an increased root capability to take up sulfate. Furthermore, the upregulation of the two low affinity sulfate transporter genes SlST2.1 and SlST4.1 in iron-deficient roots, accompanied by a substantial accumulation of total sulfur and thiols in shoots of iron-starved plants, likely supports an increased root-to-shoot translocation of sulfate. Results suggest that tomato plants exposed to iron-deficiency are able to change sulfur metabolic balance mimicking sulfur starvation responses to meet the increased demand for methionine and its derivatives, allowing them to cope with this stress.


Assuntos
Regulação da Expressão Gênica de Plantas , Deficiências de Ferro , Ferro/metabolismo , Plântula/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Sulfatos/metabolismo , Transporte Biológico/genética , FMN Redutase/metabolismo , Homeostase/genética , Solanum lycopersicum/crescimento & desenvolvimento , Filogenia , Folhas de Planta/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Plântula/genética , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo
8.
J Exp Bot ; 64(6): 1663-75, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23390290

RESUMO

The effect of iron (Fe) and sulphur (S) deprivation on sulphate uptake and assimilation pathways was investigated in durum wheat by analysing the expression of genes coding for major transporters and enzymes involved in sulphate assimilation and reduction: high-affinity sulphate transporters (TdSultr1.1 and TdSultr1.3), ATP sulphurylase (TdATPSul1 and TdATPSul2), APS reductase (TdAPR), sulphite reductase (TdSiR), O-acetylserine(thiol)lyase (TdOASTL1 and TdOASTL2), and serine acetyltransferase (TdSAT1 and TdSAT2). Further experiments were carried out to detect changes in the activities of these enzymes, together with the evaluation of growth parameters (fresh biomass accumulation, leaf green values, and total S, thiol, and Fe concentrations). Fe shortage in wheat plants under adequate S nutrition resulted in an S deficiency-like response. Most of the genes of the S assimilatory pathway induced by S deprivation (TdATPSul1, TdAPR, TdSir, TdSAT1, and TdSAT2) were also significantly up-regulated after the imposition of the Fe limitation under S-sufficient conditions. However, the differential expression of genes encoding the two high-affinity transporters (TdSultr1.1 and TdSultr1.3) indicates that the mechanisms of sulphate uptake regulation under Fe and S deficiency are different in wheat. Moreover, it was observed that the mRNA level of genes encoding ATPS, APR, and OASTL and the corresponding enzyme activities were often uncoupled in response to Fe and S availability, indicating that most probably their regulation involves a complex interplay of transcriptional, translational, and/or post-translational mechanisms induced by S and/or Fe deficiency.


Assuntos
Ferro/metabolismo , RNA de Plantas/metabolismo , Plântula/fisiologia , Enxofre/metabolismo , Transcrição Gênica , Triticum/fisiologia , Transporte Biológico , Clonagem Molecular , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA de Plantas/genética , Plântula/enzimologia , Plântula/genética , Serina O-Acetiltransferase/genética , Serina O-Acetiltransferase/metabolismo , Estresse Fisiológico , Sulfato Adenililtransferase/genética , Sulfato Adenililtransferase/metabolismo , Sulfatos/metabolismo , Triticum/enzimologia , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...